

Report No.611801-03 & -04 WY2401F

Development of Approach Transition from Box Beam Guardrail to Concrete Parapet

Final Report

Principal Investigator: Roger P. Bligh, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843 Phone: 979-317-2703 Email: <u>R-Bligh@tti.tamu.edu</u>

Report Date: November 2023

DISCLAIMER Notice

This document is disseminated under the sponsorship of the Wyoming Department of Transportation ("WYDOT") in the interest of information exchange. The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The content does not necessarily reflect the official views or policies of WYDOT, The Texas A&M University System ("TAMUS"), or the Texas A&M Transportation Institute ("TTI"). This report does not constitute a standard, specification, or regulation. WYDOT, TAMUS, and TTI do not endorse any products or manufacturers. Trademarks or manufacturers' names appear in this report due to a product's use as part of the objective of the document. WYDOT, TTI, and the Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") do not assume, either jointly or severally, any liability for the use of the information contained in this document. Further, WYDOT, TTI, and TTI Lab will not be liable for any indirect, incidental, consequential, punitive, or other damages however arising, whether WYDOT, TTI, and TTI Lab knew or should have known of the possibility of such damage, loss, or expense including, without limitation, any claim for damage based, or claimed to be based, upon any negligent act, omission, error, correction of error, delay, or breach of an obligation by the TTI Lab.

Quality Assurance Statement

The Wyoming Department of Transportation (WYDOT) provides high-quality information to serve Government, industry and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility and integrity of its information. WYDOT periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground Laboratory with TTI's Roadside Safety and Physical Security Division ("TTI Lab") quality procedures and American Association of State Highway and Transportation Officials ("AASHTO") *Manual for Assessing Safety*

Hardware, Second Edition (MASH) guidelines and standards. The TTI Lab strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to WYDOT, and both parties will endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement

sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

Copyright

No copyrighted material, except that which falls under the "fair use" clause, may be incorporated into a report without permission from the copyright owner if the copyright owner requires such. Prior use of the material in a WYDOT or governmental publication does not necessarily constitute permission to use it in a later publication.

• Courtesy — Acknowledgment or credit will be given by footnote, bibliographic reference, or a statement in the text for use of material contributed or assistance provided even when a copyright notice is not applicable.

• Caveat for Unpublished Work —Some material may be protected under common law or equity even though no copyright notice is displayed on the material. Credit will be given and permission will be obtained as appropriate.

• Proprietary Information — To avoid restrictions on the availability of reports, proprietary information will not be included in reports unless it is critical to the understanding of a report and prior approval is received from WYDOT. Reports containing such proprietary information will contain a statement on the Technical Report Documentation Page restricting availability of the report.

Creative Commons:

The report is covered under a Creative Commons, CC-BY-SA license. When drafting an adaptive report or when using information from this report, ensure you adhere to the following:

Attribution — You must give appropriate credit, provide a link to the license and indicate if changes were made. You may do so in any reasonable manner but not in any way that suggests the licensor endorses you or your use. ShareAlike — If you remix, transform or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy or moral rights may limit how you use the material.

Any use of this publication to train generative artificial intelligence (AI) technologies to generate text is expressly prohibited. The authors, contractor, and WYDOT reserve all rights to license uses of this work for generative AI training and development of machine learning language models.

			Technical Report	Documentation Page
1. Report No. 2 WY2401F 2	2. Government Accession	on No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date	
Development of Approach Transition from Box Bea		am Guardrail	December 2023	3
to Concrete Paranet			6. Performing Organiza	ation Code
7. Author(s)			8. Performing Organiza	ation Report No.
Roger P. Bligh (#0000-0001-5699-0	070X), Nauman	M. Sheikh	TRNo. 611801-	03 & -04
(#0000-0003-1718-4881) Nathan [) Schulz (#000	0-0002-7527-		
9419) William I. L. Schroeder (#00	00-0002-8497-	4659)		
9 Performing Organization Name and Address	00 0002 0437	+000)	10 Work Unit No. (TRA	(19)
Toxas A&M Transportation Institute		d		
	Froming Groun	iu	<u> </u>	1
3135 TAMU			11. Contract or Grant N	0.
College Station, Texas 77843-3135	5		RS04219	
			TPF-5(393)	
12. Sponsoring Agency Name and Address			13. Type of Report and	Period Covered
Wyoming Department of Transporta	ation		Technical Repo	rt:
5300 Bishop Blvd			Anril 2022 – De	cember 2023
Chavenne, WV 82000 22404				
			14. Sponsonny Agency	Code
15. Supplementary Notes				
Project Title: Pooled Fund for the D	evelopment of	Approach Guard	rail Transitions fo	or Box Beam
and MGS (Wyoming, Montana)				
WYDOT Project Champion Bill Wil	son			
		· · · ·		
This research is a step in the Wyon	ning Departmer	it of Transportati	on's ongoing effo	orts to
implement the Manual for Assessin	ig Safety Hardw	<i>/are (MASH</i>) to e	nhance roadside	e safety and
reduce the severity of run-off-road of	crashes. The ob	pjective of this re	search was to de	evelop a MASH
Test Level 3 (TL-3) compliant stiffne	ess transition fr	om box beam ro	adside quardrail t	to concrete
parapet or bridge rail. Shape transit	paranet or bridge rail. Shane transitions were developed to transition the vertical concrete profile to			ncrete profile to
which the bay been transition is att	cohod to a Nov		n dene profile	
	lached to a nev		e slope profile.	
The Concrete Parapet Shape Trans	sition and box b	eam transition to	o concrete parape	et met the
performance criteria for MASH TL-3	3 transitions. Bo	oth transition syst	tems are conside	ered MASH
compliant.		,		
		_	_	
This report provides details on the c	development of	the Concrete Pa	rapet Shape Tra	nsition and box
beam approach transition, the crasl	h tests and resu	ults, and the perf	ormance assessr	ment of the
transitions for MASH TL-3 evaluation	on criteria.			
47. Key Marda	I			
In Rey Words		I. DISTRIBUTION Stateme	er i L	
Longituginal Barrier, Crash Lest, Bo		TI-:	a accallable the second	when the extension of
	ox Beam,	This document i	s available throu	gh the National
Guardrail, Transition, Concrete Par	ox Beam, apet,	This document i Transportation I	s available throu _ibrary and the W	gh the National /yoming State
Guardrail, Transition, Concrete Par Roadside Safety, <i>MASH</i> , Wyoming	ox Beam, apet,	This document i Transportation L Library. Copyrig	s available throu _ibrary and the W ht ©2019. All righ	gh the National /yoming State nts reserved,
Guardrail, Transition, Concrete Par Roadside Safety, <i>MASH</i> , Wyoming	ox Beam, apet,	This document i Transportation L Library. Copyrig State of Wvomir	s available throu Library and the W ht ©2019. All righ ng. Wyoming Der	gh the National /yoming State nts reserved, partment of
Guardrail, Transition, Concrete Par Roadside Safety, <i>MASH</i> , Wyoming	ox Beam, apet,	This document i Transportation L Library. Copyrig State of Wyomin Transportation	s available throu Library and the W ht ©2019. All righ ng, Wyoming Dep and Texas A&M	gh the National /yoming State nts reserved, partment of Transportation
Guardrail, Transition, Concrete Par Roadside Safety, <i>MASH</i> , Wyoming	ox Beam, apet,	This document i Transportation L Library. Copyrig State of Wyomir Transportation,	s available throu Library and the W ht ©2019. All righ ng, Wyoming Dep and Texas A&M	gh the National /yoming State nts reserved, partment of Transportation
Guardrail, Transition, Concrete Par Roadside Safety, <i>MASH</i> , Wyoming	ox Beam, apet,	This document i Transportation L Library. Copyrig State of Wyomir Transportation, Institute.	s available throu- Library and the W ht ©2019. All righ ng, Wyoming Dep and Texas A&M	gh the National /yoming State hts reserved, partment of Transportation
Guardrail, Transition, Concrete Par Roadside Safety, MASH, Wyoming 19. Security Classif. (of this report) 20	D. Security Classif. (of t	This document i Transportation L Library. Copyrig State of Wyomir Transportation, Institute.	s available throu- Library and the W ht ©2019. All righ ng, Wyoming Dep and Texas A&M 21. No. of Pages	gh the National /yoming State hts reserved, partment of Transportation

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

APPROXIMATE CONVERSIONS TO SI UNITS Symbol When You Know Multiply By To Find Symbol in inches 25.4 millimeters mm in inches 25.4 millimeters mm yd yards 0.914 meters m yd square inches 645.2 square millimeters Km ft ² square inches 645.2 square meters m ² qd square feet 0.033 square meters m ² acras outors 2.55 square kilometers km ² qd square miles 2.57 milliters mL qd square miles 2.57 milliters mL qd galons 3.785 liters L L qd outors 2.835 grams g g outors 0.454 kilograms Kg m ³ outors 0.454 newtons N Mg (r	SI* (MODERN METRIC) CONVERSION FACTORS					
Symbol When You Know Multiply By To Find Symbol in inches 25.4 millimeters mm in inches 25.4 millimeters m yd yards 0.914 meters m mill miles 1.61 kilometers m in ² square inches 645.2 square meters m ² yd ² square miles 0.036 square meters m ² ac acres 0.405 hectares ha m ² square miles 2.59 square kilometers m ³ m ² cubic vards 0.785 cubic meters m ³ m ⁴ cubic yards 0.785 cubic meters m ³ vd ³ cubic yards 0.454 kilograms kg r short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "T) r FoRCE and PRESURE r STRESS N lb/in ² poundforce		APPROXIM	ATE CONVERSIO	NS TO SI UNITS		
In inches 25.4 millimeters mm It feet 0.305 meters m It feet 0.305 meters m yards 0.914 meters m mile 1.61 kilometers km in ² square inches 645.2 square meters m ² galare jetet 0.033 square meters m ² ac acres 0.405 hectares ha m ² square miles 2.59 square meters m ² ac acres 0.405 hectares ha gal galons 3.785 liters L n m ² galons 3.785 liters M NOTE: volumes greater than 1000L shalb be shown in m ³ m ³ ounces 28.35 grams g g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/	Symbol	When You Know	Multiply By	To Find	Symbol	
in inches 25.4 millimeters mm it feet 0.305 meters m yards 0.914 meters m miles 1.61 kilometers m in² square inches 645.2 square milers m² yd3 square yards 0.33 square meters m² yd4 square yards 0.836 square meters m² yd3 square miles 2.59 square kilometers m² gal galons 3.785 liters L thi fi od ounces 29.57 milliters m L thi gal galons 3.785 liters L thi fi od ounces 29.57 millitiers mL thi gal galons 0.785 cubic meters m³ ounces 20.35 grams g thi gal galons 0.785 kilograms k	-		LENGTH	·		
ft feet 0.305 meters m yd yards 0.914 meters m miles 1.61 kilometers km in² square inches 645.2 square meters m² in² square feet 0.036 square meters m² ac acres 0.405 hectares ha ac acres 0.405 hectares ha m² square miles 2.57 millitiers mL gal galons 3.785 litters L galons 3.785 litters M m³ vdbic feet 0.028 cubic meters m³ vdf ⁴ cubic yards 0.765 cubic meters m³ galons 0.784 kilograms g g ounces 28.35 grams g g r bounds 0.454 kilograms m³ vdb/m² pounds 0.	in	inches	25.4	millimeters	mm	
yd yards 0.914 meters m miles 1.61 kilometers km n² square inches 645.2 square meters m² yd² square feet 0.093 square meters m² yd² square miles 0.405 square meters m² acres 0.405 square incles km² m² square miles 2.59 square kilometers km² fil cubic feet 0.028 cubic meters m³ gal galons 0.785 cubic meters m³ yd³ cubic feet 0.028 garams g oucces 28.35 grams g or oucces 28.35 grams g or short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or *1") "F Fahrenheit 5(F-32)/9 Celsius °C °C or (F-32)/1.8 rewtons N blb/n° poundfor	ft	feet	0.305	meters	m	
mi miles 1.61 kilometers km in ² square inches 645.2 square meters m ² yd ² square yards 0.836 square meters m ² acres 0.405 hectares ha acres 0.405 hectares ha gal galons 3.785 litters L gal galons 3.785 litters L gal galons 3.785 cubic meters m ³ yd ³ cubic yards 0.765 cubic meters m ³ ounces 28.35 grams g gb pounds 0.454 kilograms g or MASS c c c gal pounds 0.454 kilograms g gal pounds 0.454 kilograms N	yd	yards	0.914	meters	m	
AREAin²square inchesm²ft²square feet0.093square metersm²yd²square yards0.836square metersm²acres0.405hectaresham²square miles2.59square kilometersm²ft3cubic feet0.028cubic metersm³gailgailons3.785littersLft3cubic feet0.028cubic metersm³vd³cubic grads0.765cubic metersm³NOTE: volumes greater than 1000L shall be shown in m³msm302ounces28.35gramsgjbpounds0.454kilogramskgjcounces28.35gramsgjbpounds0.454kilogramskgjcFoRCE and PRESSURE or STRESSlblb/in²poundforce4.45newtonsNlb/in²poundforce4.45metonsNlb/in²poundforce4.45metonsNmmmillimeters0.039inchesinmmmeters3.28feetftmmmeters0.261milesmilmmsquare meters1.195square inchesin²masquare meters0.036square inchesin²ftpoundforce0.244galuaresgaluaremmmillimeters0.03	mi	miles	1.61	kilometers	km	
Inf ⁴ square inches 645.2 square meters m ⁴ yd ² square yards 0.836 square meters m ² ac acres 0.405 hectares ha m ² square miles 2.59 square meters m ² floz fluid ounces 29.57 milliliters mL gal galons 3.785 liters L rd ³ cubic feet 0.028 cubic meters m ³ yd ⁴ cubic yards 0.765 cubic meters m ³ ounces 28.35 grams g g rd ounces 28.35 grams g rd sounds 0.454 klograms kg r sounds 0.454 klograms g r sounds 0.454 klograms g r sounds 0.454 klograms m ³ r sounds 0.454 klograms m ⁴			AREA		0	
If* Square feet 0.093 Square meters m ⁴ ac actres 0.405 hectares ha ac actres 0.405 hectares ha m ² square miles 2.59 square kilometers km ² fl oz fluid ounces 29.57 millilliters mL gal galons 3.785 liters L ft ³ cubic feet 0.028 cubic meters m ³ yd ³ cubic yards 0.765 cubic meters m ³ voltic feet 0.028 grams g g ounces 28.35 grams g g ounces 28.35 grams g kg g r short ton (2000 lb) 0.454 kilograms (or metric ton") Mg (or "t") r FERESURE or STRESS kilopaccals kPa lb/in ² poundforce per square inch 6.89 kilopascals kPa b/in ² poundforce	in ²	square inches	645.2	square millimeters	mm²	
yd* square yards 0.836 square meters m* ac acres 0.405 hectares ha ml* square miles 2.59 square kilometers km² fluid ounces 29.57 milliliters mL L gal gailons 3.785 liters L L gal gailons 3.785 liters L L gal gailons 3.785 cubic meters m³ m² yd* cubic feet 0.028 cubic meters m³ m³ ounces 28.35 grams g gl (or "t") T short tons (2000 lb) 0.454 kilograms kg "C or f(F-32)/18 FORCE and PRESSURE or STRESS N gl (or "t") lb/m² poundforce 4.45 newtons N lb/m² poundforce per square inch 6.89 kilopascals kPa Symbol When You Know Multiply By <td< td=""><td></td><td>square feet</td><td>0.093</td><td>square meters</td><td>m²</td></td<>		square feet	0.093	square meters	m²	
ac. actues 0.403 inetuites ina mife square miles 2.59 square kilometers km² iloz galons 3.785 liters L gal galons 0.765 cubic meters m³ yd* cubic yards 0.765 cubic meters kg gal pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") "F Fahrenheit 5(F:32)/9 celsius cC C or (F:32)/1.8 rewtons N kilopascals kPa bifin ² poundforce 4.45 newtons N bifin ² poundforce at the stand ton the stan	yd-	square yards	0.836	square meters	m² bo	
Init Sequence milling Local fl oz fluid ounces 29,57 milliliters mL fl a gallons 3,785 liters L fl a cubic feet 0,028 cubic meters m³ yd³ cubic feet 0,028 cubic meters m³ NOTE: volumes greater than 1000L shall be shown in m³ MASS oz ounces 28,35 grams g lb pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") T TEMPERATURE (exact degrees) *C *C or (F-32/1.8 *C FORCE and PRESSURE or STRESS N bf poundforce per square inch 6.49 kilopascals kPa Symbol When You Know Multiply By To Find Symbol Mm millimeters 0.039 inches in m meters 1.09 yards yd mm square meters 1.0764 square inches in² mm millimeters 0.386 square square mi² square meters 1.195 square fielet ft²	ac mi ²	square miles	2 50	square kilometers	lia km ²	
fl oz fluid ounces 29.57 milliliters mL gal galons 3.785 liters L vd ³ cubic feet 0.028 cubic meters m ³ NOTE: volumes greater than 100L shall be shown in m ³ NOTE: volumes greater than 100L shall be shown in m ³ MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) "F Fahrenheit 5(F-32)/9 Celsius °C FORCE and PRESSURE or STRESS lb poundforce per square inch 6.89 kilopascals kPa klomators kilometers 0.039 inches in meters 3.28 feet ft meters 0.621 miles mi klometers 0.621 miles mi meters 0.621 miles mi mk kilometers 0.621 miles mi mk kilometers 0.621 miles mi m ² square meters 1.195 square feet ft ² m ² square meters 1.195 square feet ft ² m ² square meters 1.195 square feet ft ² m ³ square meters 0.386 square inches in ² m ³ square meters 0.386 square inches m ² klometers 0.336 square feet ft ³ m ³ square meters 0.336 square inches m ³ m ³ square meters 0.336 square inches m ³ klometers 0.336 square inches m ³ m ³ square meters 0.336 square inches m ³ m ³ square meters 0.336 square inches m ³ % square meters 0.336 square miles m ³ % % % % % % % % % % % % % % % % % % %	1111	square miles		square kilometers	NIII	
gal gallons 3,785 liters L ft ³ cubic feet 0,028 cubic meters m ³ NOTE: volumes greater than 1000L shall be shown in m ³ MASS oz ounces 28.35 grams g Job pounds 0.454 kilograms kg TEMPERATURE (exact degrees) °C or ("F-32)/1.8 Fahrenheit S(F-32)/9 Celsius °C or ("F-32)/1.8 FORCE and PRESSURE or STRESS Ibf poundforce per square inch 6.89 kitopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol Maters Maters newtons N m Meters 0.021 meters 0.021 meters 0.021 meters 0.021 meters 0.221 milimeters <td>fl oz</td> <td>fluid ounces</td> <td>29.57</td> <td>milliliters</td> <td>ml</td>	fl oz	fluid ounces	29.57	milliliters	ml	
Hat Cubic feet 0.028 Cubic meters m³ yd ^a Cubic yards 0.765 Cubic meters m³ NOTE: volumes greater than 1000. shall be shown in m³ MASS g oz ounces 28.35 grams g T short tons (2000 lb) 0.454 kilograms kg "F Fahrenheit 5(F.32)/9 Celsius °C or (F.32)/1.8 °C °C bf poundforce per square inch 6.89 kilopascals N bf/in ² poundforce per square inch 6.89 kilopascals N bf/in ² poundforce per square inch 6.89 kilopascals KPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm meters 3.28 feet ft mm square meters 0.621 miles mi maters 0.264 square feet ft ² dare	dal	gallons	3 785	liters	1	
yd³cubic yards0.765cubic metersm³MASSOZOUNCES: volumes greater than 1000L shall be shown in m³MASSozOUNCES: volumes greater than 1000L shall be shown in m³OZOUNCESSTEMPERATURE (exact degrees)"CF FahrenheitS(F-32)/1.8FORCE and PRESSURE or STRESSIbpoundforce4.45newtonsNPORCE and PRESSURE or STRESSIbpoundforce per square inch6.89klippascalskPa ORCE and PRESSURE or STRESS Ibpoundforce per square inch6.89klippascalsNSymbolWhen You KnowMultiply ByTo FindSymbolSymbolLEING KETMmeters3.28feetftmAREAmmadare meters1.09yardsyd2mmAREAmm²square meters1.09yare within "10m² <td colspan<="" td=""><td>ft³</td><td>cubic feet</td><td>0.028</td><td>cubic meters</td><td>m³</td></td>	<td>ft³</td> <td>cubic feet</td> <td>0.028</td> <td>cubic meters</td> <td>m³</td>	ft ³	cubic feet	0.028	cubic meters	m ³
NOTE: volumes greater than 1000L shall be shown in m³ MASS or Start tons (2000 lb) TEMPERATURE (exact degrees) "F Fahrenheit Start tons (2000 lb) TEMPERATURE (exact degrees) "C Celsius "C OPCCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N Ibf poundforce per square inch 6.89 kilopascals N APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm meters 0.039 inches in mm meters 0.039 inches in mm meters 0.039 inches in mm millimeters 0.039 inches in mm millimeters 0.039 inches in mm	vd ³	cubic vards	0.765	cubic meters	m ³	
oz ounces 28.35 grams g ib pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) ** Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 ** FORCE and PRESSURE or STRESS Ib/ poundforce 4.45 newtons N Ib/ poundforce per square inch 6.89 kilopascals KPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm LENGTH mm millimeters 0.039 inches in m meters 1.09 yards yd km kilometers 0.621 miles mile m ² square meters 1.0764 square feet ft ² m ² square meters 1.195 square mile mi ² m ² square meters 0.336 square miles mi ² m ³	5	NOTE: volume	s greater than 1000L	shall be shown in m ³		
oz ounces 28.35 grams g b pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") "F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS N Ib/in? poundforce 4.45 newtons N Ib/in? poundforce per square inch 6.89 kilopascals KPa Symbol When You Know Multiply By To Find Symbol Meters 0.039 inches in mm meters 3.28 feet ft mm? square meters 0.021 miles mi mm2 square meters 10.764 square feet ft² m2 square meters 0.386 square miles mi² m3 cubic meters 0.344 fuid ounces oz kg grams 0.034 fuid ounces oz m4 square meters 1.195 square feet ft² m4 square meters 1.307 cubic feet ft³ m4 hectares 2.47<			MASS			
b pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") "F Fahrenheit 5(F-32)/9 or (F-32)/1.8 Celsius °C FORCE and PRESSURE or STRESS lbf poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol m ELENGTH mm meters 3.28 feet ft m meters 0.029 inches in m ² square meters 1.09 yards yd m ² square meters 0.021 miles mi m ² square meters 1.195 square feet ft ² m ² square meters 1.307 acres acc m ³ cubic meters 0.334 fluid ounces oz M ³ cubic meters	oz	ounces	28.35	grams	g	
T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) °F Fahrenheit 5(F-32)/9 Celsius °C °C FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N APPROXIMATE CONVERSIONS Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol m Celsius °C mm milies in m celsius °C meters 0.039 inches in mm milies mi mm² square milimeters 0.039 inches in² mm² square meters 1.09 yards mm² square meters 1.0764 square square meters mm² square meters 1.195 square meters	lb	pounds	0.454	kilograms	kg	
TEMPERATURE (exact degrees)°FFahrenheit $5(F-32)/1.8$ °CFORCE and PRESSURE or STRESSlbfpoundforce4.45newtonsNhyperbolic per square inch6.89kilopascalskPaAPPROXIMATE CONVERSIONS FROM SI UNITSSymbolWhen You KnowMultiply ByTo FindSymbolmmmillimeters0.039inchesinmmeters1.09yardsydmmeters0.621milesmimm2square meters1.09yardsydsquare meters0.0016square feetft²m2square meters1.195square feetft²m2square meters1.195square feetft²m2square meters1.307cubic feetft³m3cubic meters0.034fluid ouncesozMASSggrams0.035ouncesozggrams0.035ouncesozkgkilograms2.202poundslbm3cubic meters1.307cubic feetft³m3cubic meters1.307cubic feetft³m3cubic meters1.307cubic feetft³m4millitlers0.035ouncesozggrams0.035ouncesozggrams0.035ouncesoz <th< td=""><td>Т</td><td>short tons (2000 lb)</td><td>0.907</td><td>megagrams (or metric ton")</td><td>Mg (or "t")</td></th<>	Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")	
°F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol meters 0.039 inches in m meters 3.28 feet ft m meters 0.621 miles mil mm² square millimeters 0.6016 square inches in² m² square meters 10.764 square feet ft² m² square kilometers 0.386 square miles mi² km² square kilometers 0.386 square miles mi² m² square kilometers 0.386 square miles mi² m² square meters 1.195 square miles mi² m³ cubic meters		TEM	PERATURE (exac	t degrees)		
FORCE and PRESSURE or STRESS Ibf poundforce per square inch 6.89 kilopascals N Ibf in 2 PORCE and PRESSURE or STRESS Ibf in 2 N APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol Imm Multiply By To Find Symbol meters 0.039 inches in meters 0.621 miles mi MEREA mm AREA mm ² square meters 0.0016 square inches in ² milimeters 0.0016 square meters 10.764 square meters milimeters 0.264 <th col<="" td=""><td>°F</td><td>Fahrenheit</td><td>5(F-32)/9</td><td>Celsius</td><td>°C</td></th>	<td>°F</td> <td>Fahrenheit</td> <td>5(F-32)/9</td> <td>Celsius</td> <td>°C</td>	°F	Fahrenheit	5(F-32)/9	Celsius	°C
FORCE and PRESSURE or STRESS Ibf poundforce per square inch 6.89 kilopascals N APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 0.621 miles miles mm ² square millimeters 0.0016 square inches in ² m ² square meters 1.0764 square feet ft ² m ² square meters 1.195 square yards yd ² ha hectares 2.47 acres ac km ² Square kilometers 0.386 square miles mi ² mL milliliters 0.034 fluid ounces oz ubit 0.264 gallons gall g grams 0.035 ounces oz g			or (F-32)/1.8			
Ibf poundforce 4.45 newtons N Ibf/in² poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 0.621 miles mil mm² square millimeters 0.0016 square inches in² m² square meters 1.09 yards yd² na AREA mil mil mil m² square meters 1.195 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² mL milliliters 0.034 fluid ounces oz L iters 0.264 gallons gall m³ cubic meters 1.307 cubic yards yd³ g grams 0.035 ounces oz kil		FORCI	E and PRESSURE	or STRESS		
Ibi/in* poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mil m ² square millimeters 0.0016 square inches in ² m ² square meters 1.0764 square feet ft ² m ² square meters 1.195 square miles mi ² Mathematics 0.386 square miles mi ² Mathematics 0.386 square miles mi ² ML milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m ³ cubic meters 1.307 cubic feet ft ³ m ³ cubic meters 1.307 cubic feet ft ³ m ⁴ square miles ubic yards yd ³ Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) </td <td>lbf</td> <td>poundforce</td> <td>4.45</td> <td>newtons</td> <td>N</td>	lbf	poundforce	4.45	newtons	N	
Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi mm² square meters 10.764 square inches in² m² square meters 1.195 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² m4m² Square kilometers 0.344 fluid ounces oz km² square stillimeters 0.035 ounces oz ma hectares 1.307 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ g grams 0.035 <tdo< td=""><td>Ibt/in²</td><td>poundforce per square inch</td><td>6.89</td><td></td><td>kPa</td></tdo<>	Ibt/in ²	poundforce per square inch	6.89		kPa	
Symbol When You know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi mm² square meters 10.764 square inches in² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 1.307 cubic feet ft³ m³ cubic meters 2.202 pounds lb Mg (or "t") megagrams (or "metric tor") 1.103 short to	O and al		TE CONVERSION			
LENGTHmmmillimeters0.039inchesinmmeters3.28feetftmmeters1.09yardsydkmkilometers0.621milesmilAREAmm²square millimeters0.0016square feetft²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²VOLUMEmLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters1.307cubic feetft³m³cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°FFORCE and PRESSURE or STRESSNnewtons0.225poundforce per square inchlb/in²	Symbol	When You Know		TOFING	Symbol	
Infinit Infiniteers 0.039 Infiles Infiles m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi mm² square millimeters 0.621 miles mi m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² VOLUME mi² volumes mi² mL nilliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 1.307 cubic yards yd³ m³ cubic meters 1.307 cubic yards yd³ g grams 0.035 ounces oz klograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C		millimatoro		inches	in	
Interest 3.20 react rt m meters 1.09 yards yd km kilometers 0.621 miles mi mm² square millimeters 0.0016 square inches in² m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² VOLUME VOLUME mi mi² mL milliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz g grams 0.035 ounces oz pal MASS 2.202 pounds lb psort tos psort tos	m	meters	0.039	feet	111 ft	
Initial models 1.00 models yards yards km kilometers 0.621 miles mi mm² square millimeters 0.0016 square inches in² m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² VOLUME m mi² gal mi² mL milliliters 0.024 fluid ounces oz oz L liters 0.264 gallons gal m³ m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz g grams 0.035 ounces oz oz Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T FORCE and PRESSURE or STRESS N newtons 0.225 </td <td>m</td> <td>meters</td> <td>1.00</td> <td>varde</td> <td>vd</td>	m	meters	1.00	varde	vd	
mm AREA mm mm² square millimeters 0.0016 square inches in² m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² VOLUME VOLUME milliliters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf N <	km	kilometers	0.621	miles	mi	
mm² square millimeters 0.016 square inches in² m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² ML milliliters 0.386 square miles oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz g grams 0.035 ounces oz b Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch b/in² </td <td></td> <td></td> <td>AREA</td> <td></td> <td></td>			AREA			
m² square meters 10.764 square feet ft² m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² ML milliliters 0.386 square miles mi² VOLUME mi² VOLUME oz ml liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf N newtons 0.225 poundforce lbf	mm ²	square millimeters	0.0016	square inches	in ²	
m² square meters 1.195 square yards yd² ha hectares 2.47 acres ac km² Square kilometers 0.386 square miles mi² mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz g grams 0.035 ounces oz z Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf klopascals 0.145 poundforce per square inch lbf/in²	m ²	square meters	10.764	square feet	ft ²	
ha hectares 2.47 acres ac km ² Square kilometers 0.386 square miles mi ² VOLUME mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m ³ cubic meters 35.314 cubic feet ft ³ m ³ cubic meters 1.307 cubic yards yd ³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lb/in ²	m ²	square meters	1.195	square yards	yd ²	
km² Square kilometers 0.386 square miles mi² mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb b Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lbf/in²	ha	hectares	2.47	acres	ac	
VOLUME mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in²	km ²	Square kilometers	0.386	square miles	mi ²	
mL milliliters 0.034 fluid ounces oz L liters 0.264 gallons gal m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz g grams 0.035 ounces oz bb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in²			VOLUME			
L liters 0.264 gallons gal m ³ cubic meters 35.314 cubic feet ft ³ m ³ cubic meters 1.307 cubic yards yd ³ MASS g grams 0.035 ounces 0z kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lb/in ²	mL	milliliters	0.034	fluid ounces	OZ	
m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lbf/in²	L	liters	0.264	gallons	gal	
m³ cubic meters 1.307 cubic yards yd³ MASS MASS 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in²	m ³	cubic meters	35.314	cubic feet	ft ³	
minos minos g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in ²	m	cubic meters	1.307	cubic yards	yas	
g grams 0.035 ounces 02 kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in ²		aromo	IVIA55	0,0000	07	
Ng (or "t") Newtons 2.202 pounds ID Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch lbf kPa kilopascals 0.145 poundforce per square inch lb/in ²	y ka	yiallis kilograms	0.030	nounds	UZ Ih	
TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce per square inch Ibf kPa kilopascals 0.145 poundforce per square inch Ibf	Ma (or "t")	megagrams (or "metric top")	∠.∠∪∠ 1 103	short tons (2000lb)	Т	
°C Celsius 1.8C+32 Fahrenheit °F FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.145 poundforce per square inch lb/in ²		TFM	PERATURE (exac	t degrees)		
FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.145 poundforce per square inch lb/in ²	°C	Celsius	1 8C+32	Fahrenheit	°F	
N newtons 0.225 poundforce per square inch Ibf	U	FORCI	F and PRESSURE	or STRESS		
kPa kilopascals 0.145 poundforce per square inch Ib/in ²	N	newtons		poundforce	lhf	
	kPa	kilonascals	0.225	poundforce per square inch	lb/in ²	

*SI is the symbol for the International System of Units

REPORT AUTHORIZATION

REPORT REVIEWED BY:

Glen Schoeler

Glenn Schroeder, Research Specialist Drafting & Reporting

adan Mayer

Adam Mayer, Research Specialist Construction

Robert Kocman, Research Specialist Mechanical Instrumentation

eevesen

Ken Reeves, Research Specialist Electronics Instrumentation

Richard Badillo, Research Specialist Photographic Instrumentation

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

Bill L. Griffith, Research Specialist Quality Manager

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

Roger P. Bligh, P.E. Senior Research Engineer

TABLE OF CONTENTS

		Page
Chapter 1.	Introduction	1
1.1.	Background	1
1.2.	Objective	1
1.3.	Work Plan	1
Chapter 2.	Concrete Parapet Shape Transition Design	3
2.1.	Introduction	3
2.2.	Vertical to Single Slope Transition	3
2.2.1.	Pickup Truck Impact Simulations (MASH Test 3-21)	4
2.2.2.	Passenger Sedan Impact Simulations (MASH Test 3-20)	6
2.3.	Vertical to New Jersey Safety Shape Transition	7
2.3.1.	Pickup Truck Impact Simulations (MASH Test 3-21)	8
2.3.2.	Small Sedan Impact Simulations (MASH Test 3-20)	9
2.4.	CRASH TESTING RECOMMENDATIONS	10
2.4.1.	MASH Test 3-21	10
2.4.2.	MASH Test 3-20	11
Chapter 3.	Box Beam Transition to Concrete Parapet DEsign	12
3.1.	Introduction	12
3.2.	Design Modifications	13
3.2.1.	Anchor Bolts	14
3.2.2.	Additional W6x9 Steel Posts	15
3.2.3.	HSS4x3 Rubrail	16
3.3.	Final Evaluation and CIP Determination	17
3.4.	Upstream Transition Evaluation	18
3.5.	Summarv	25
Chapter 4.	Test Requirements and Evaluation Criteria	26
4.1.	Crash Test Matrix	26
4.2.	Evaluation Criteria	
Chapter 5.	Test Conditions	30
5.1.	Test Facility.	30
5.2	Vehicle Tow and Guidance System	
5.3.	Data Acquisition Systems	
531	Vehicle Instrumentation and Data Processing	30
5.3.2	Anthropomorphic Dummy Instrumentation	
5.3.3.	Photographic Instrumentation Data Processing	
Chapter 6.	Crash Testing of Concrete Parapet Shape Transition	
6 1	Concrete Parapet Shape Transition Details	
611	Test Article and Installation Details	34
612	Design Modifications during Tests	
613	Material Specifications	
6.2	MASH Test 3-20 (Crash Test No. 611801-03-1)	00 40
6.2. 6.2.1	Test Designation and Actual Impact Conditions	07 10
0.2.1. 622	Weather Conditions	4 0 //2
623	Test Vehicle	<u>42</u> 12
0.2.0.		····· ¬∠

6.2.4.	Test Description	43
6.2.5.	Damage to Test Installation	44
6.2.6.	Damage to Test Vehicle	45
6.2.7.	Occupant Risk Factors	48
6.2.8.	Test Summary	49
6.3.	MASH Test 3-21 (Crash Test No. 611801-03-2)	51
6.3.1.	Test Designation and Actual Impact Conditions	51
6.3.2.	Weather Conditions	53
6.3.3.	Test Vehicle	53
6.3.4.	Test Description	54
6.3.5.	Damage to Test Installation	55
6.3.6.	Damage to Test Vehicle	56
6.3.7.	Occupant Risk Factors	59
6.3.8.	Test Summary	60
Chapter 7.	Crash Testing of Box Beam Guardrail Transition to Concrete	
	Parapet	62
7.1.	Concrete Parapet Shape Transition Details	62
7.1.1.	Test Article and Installation Details	62
7.1.2.	Design Modifications during Tests	62
7.1.3.	Material Specifications	66
7.1.4.	Soil Conditions	66
7.2.	MASH Test 3-20 (Crash Test 611801-04-1)	67
7.2.1.	Test Designation and Actual Impact Conditions	67
7.2.2.	Weather Conditions	69
7.2.3.	Test Vehicle	69
7.2.4.	Test Description	71
7.2.5.	Damage to Test Installation	71
7.2.6.	Damage to Test Vehicle	73
7.2.7.	Occupant Risk Factors	76
7.2.8.	Test Summary	76
7.3.	MASH Test 3-21 (Crash Test 611801-04-2)	79
7.3.1.	Test Designation and Actual Impact Conditions	79
7.3.2.	Weather Conditions	81
7.3.3.	Test Vehicle	81
7.3.4.	Test Description	83
7.3.5.	Damage to Test Installation	83
7.3.6.	Damage to Test Vehicle	85
7.3.7.	Occupant Risk Factors	88
7.3.8.	Test Summary	88
Chapter 8.	Summary and Conclusions	91
8.1.	Assessment of Test Results and conclusions for the Concrete Para	pet
Shape Tra	Insition	91
8.2.	Assessment of Test Results and conclusions for the Box Beam	
Transition	to Concrete Parapet	92
Chapter 9.	Implementation	93
References		96

APPENDIX A.	Details of The Concrete Parapet Shape Transition and the Box	
	Beam Transition to Concrete Parapet	. 97
A.1. Detail	s of Concrete Parapet Shape Transition	. 98
A.2. Detail	s of Box Beam Transition to Concrete Parapet	120
APPENDIX B.	Supporting Certification Documents	143
APPENDIX C.	MASH Test 3-20 (Crash Test No. 611801-03-1)	185
C.1.	Vehicle Properties and Information	185
C.2.	Sequential Photographs	188
C.3.	Vehicle Angular Displacements	191
C.4.	Vehicle Accelerations	192
APPENDIX D.	MASH Test 3-21 (Crash Test No. 611801-03-2)	195
D.1.	Vehicle Properties and Information	195
D.2.	Sequential Photographs	198
D.3.	Vehicle Angular Displacements	201
D.4.	Vehicle Accelerations	202
APPENDIX E.	MASH Test 3-20 (Crash Test No. 611801-04-1)	205
E.1.	Vehicle Properties and Information	205
E.2.	Sequential Photographs	208
E.3.	Vehicle Angular Displacements	211
E.4.	Vehicle Accelerations	212
APPENDIX F.	MASH Test 3-21 (Crash Test No. 611801-04-2)	215
F.1.	Vehicle Properties and Information	215
F.2.	Sequential Photographs	218
F.3.	Vehicle Angular Displacements	221
F.4.	Vehicle Accelerations	222
APPENDIX G.	Details of the Concrete Single Slope Parapet Transition	225

LIST OF FIGURES

Pa	age
Figure 2.1 Vertical-to-SS Barrier Shape Transition Design and Impact Points	4
Figure 2.2. FE model prior to vehicle impact with shape transition	5
Figure 2.3. Vehicles at maximum kinematic instability during simulations of various	
impact points	6
Figure 2.4. Impact Points for Test 3-20 Simulations of the Vertical to SS Barrier	
Shape Transition.	6
Figure 2.5. Vehicles at maximum kinematic instability during simulations of various	
impact points.	7
Figure 2.6. Vertical to NJ Barrier Shape Transition Design and Impact Points.	8
Figure 2.7. Vehicles at maximum kinematic instability during simulations of various	
impact points	9
Figure 2.8. Vehicles at maximum kinematic instability during simulations of various	-
impact points	. 10
Figure 3.1. Box Beam Rail Section – Elevation View.	. 12
Figure 3.2. Box Beam Rail Section – Plan View	. 12
Figure 3.3. Box Beam Transition to Concrete Parapet	13
Figure 3.4 Box Beam Transition Connection	13
Figure 3.5 Exposed Anchor Bolts	14
Figure 3.6 Modified Anchor Bolts	14
Figure 3.7 Deflection of System with Modified Anchor Bolts	15
Figure 3.8 Box Beam Transition with 78-inch W6x9 posts	15
Figure 3.9. Pickup Truck at Maximum Roll Angle	16
Figure 3.10 Deflection of Box Beam Transition System	16
Figure 3.11 Box Beam Transition with HSS/v3 Rubrail	17
Figure 3.12, HSS6v2 (loft) and HSS4v3 (right) Dickup Truck at Maximum	/
Poll Andio	17
Figure 2.12 MASEL 2.20 Simulation Unstroom Section with USS4v2 Pubroil	. 17
Figure 3.15. MASH 3-20 Simulation – Opsilean Section with HSS4x3 Rubrail	23
Figure 4.1 Target CIP for MASHTL 2 Tests on Concrete Paranet Shane Transition	.24
Figure 4.1. Target CIP for MASHTL-3 Tests on Concrete Parapet Shape Hansilton.	. 21
Concrete Derenet	27
Figure 6.4. Details of the Constant Descent Change Transition	. Z1 25
Figure 6.1. Details of the Concrete Parapet Shape Transition.	. 30
Figure 6.2. Concrete Parapet Shape Transition prior to Testing 611601-05-1&2	.37
Figure 6.3. Concrete Parapet Shape Transition at Impact Phor to Testing	07
611801-03-1&2.	.37
Figure 6.4. End view of the Concrete Parapet Shape Transition Prior to Testing	~~
611801-03-1&2.	. 38
Figure 6.5. Field Side of the Concrete Parapet Shape Transition prior to Testing	~~
611801-03-1&2.	38
Figure 6.6. Concrete Parapet Snape Transition/Test Venicle Geometrics for Test	
611801-03-1	.41
Figure 6.7. Concrete Parapet Shape Transition/Test Vehicle Impact Location	
611801-03-1	. 41

Figure 6.8. Impact Side of Test Vehicle before Test 611801-03-1.	. 42
Figure 6.9. Opposite Impact Side of Test Vehicle before Test 611801-03-1	. 43
Figure 6.10. Concrete Parapet Shape Transition after Test at Impact Location	
611801-03-1	. 45
Figure 6.11. Concrete Parapet Shape Transition after Test at the Parapet Joint	
611801-03-1	. 45
Figure 6.12. Impact Side of Test Vehicle after Test 611801-03-1.	. 46
Figure 6.13. Rear Impact Side of Test Vehicle after Test 611801-03-1	. 46
Figure 6.14. Overall Interior of Test Vehicle after Test 611801-03-1	. 47
Figure 6.15. Interior of Test Vehicle on Impact Side after Test 611801-03-1	. 47
Figure 6.16. Summary of Results for MASH Test 3-20 on Concrete Parapet	
Shape Transition.	. 50
Figure 6.17. Concrete Parapet Shape Transition/Test Vehicle Geometrics for Test	
611801-03-2	. 52
Figure 6.18. Concrete Parapet Shape Transition/Test Vehicle Impact Location	
611801-03-2	. 52
Figure 6.19. Impact Side of Test Vehicle before Test 611801-03-2.	. 53
Figure 6.20. Opposite Impact Side of Test Vehicle before Test 611801-03-2	.54
Figure 6.21. Concrete Parapet Shape Transition after Test at Impact Location	
611801-03-2	56
Figure 6.22 Concrete Parapet Shape Transition after Test at the Parapet Joint	
611801-03-2	56
Figure 6.23 Impact Side of Test Vehicle after Test 611801-03-2	57
Figure 6.24 Rear Impact Side of Test Vehicle after Test 611801-03-2	57
Figure 6.25 Overall Interior of Test Vehicle after Test 611801-03-2	58
Figure 6.26 Interior of Test Vehicle on Impact Side after Test 611801-03-2	58
Figure 6.27 Summary of Results for MASH Test 3-21 on Concrete Parapet	
Shape Transition	61
Figure 7.1 Details of Box Beam Guardrail Transition to Concrete Parapet	63
Figure 7.2 Box Beam Guardrail Transition to Concrete Parapet prior to Testing	. 00
611801-04-1&2	64
Figure 7.3 Box Beam Guardrail Transition to Concrete Paranet at Impact Prior to	. 04
Testing 611801-04-18.2	64
Figure 7.4 Box Beam Guardrail Transition to Concrete Paranet at the Box Beam	.04
Transition prior to Testing 611801-04-182	65
Figure 7.5. Field Side of the Box Boam Guardrail Transition to Concrete Parapet	.05
prior to Tosting 611901 04 182	65
Figure 7.6 Box Boam to Concrete Barrier Transition/Test Vehicle Coometries for	. 05
Toct 611901 04 1	60
Figure 7.7 Pay Poom to Congrete Parrier Transition/Test Vahiele Impact Leastion	. 00
Figure 7.7. Box Beam to Concrete Barner Transition/Test Venicle Impact Location	60
511801-04-1	. 68
Figure 7.0. Impact Side of Test Vehicle before Test 011801-04-1.	. 09
Figure 7.9. Opposite impact Side of Test Venicle Defore Test 611801-04-1	. 70
rigure 7.10. Dox beam to Concrete Damer Transition at Impact Location after Test	70
011801-04-1	. 72

Figure 7.11. Overall View of the Box Beam to Concrete Barrier Transition after Test 611801-04-1	72
Figure 7.12 Impact Side of Test Vehicle after Test 611801-04-1	73
Figure 7.13. Door on the Impact Side of Test Vehicle after Test 611801-04-1	73
Figure 7.14. Overall Interior of Test Vehicle after Test 611801-04-1	74
Figure 7.15. Interior of Test Vehicle on Impact Side after Test 611801-04-1	7/
Figure 7.16. Summary of Posults for MASH Tost 3-20 on Box Boam to Concrete	/4
Barrior Transition	77
Figure 7.17. Box Beam to Concrete Barrier Transition/Test Vehicle Geometrics for	, ,
Test 611801-04-2	80
Figure 7.18. Box Beam to Concrete Barrier Transition/Test Vehicle Impact Location	
611801-04-2	80
Figure 7.19. Impact Side of Test Vehicle before Test 611801-04-2.	81
Figure 7.20. Opposite Impact Side of Test Vehicle before Test 611801-04-2	82
Figure 7.21 Box Beam to Concrete Barrier Transition at Impact Location after Test	02
611801-04-2	84
Figure 7.22 Overall View of the Box Beam to Concrete Barrier Transition after Test	01
611801-04-2	84
Figure 7.23 Impact Side of Test Vehicle after Test 611801-04-2	85
Figure 7.24 Rear Impact Side of Test Vehicle after Test 611801-04-2	85
Figure 7.25. Overall Interior of Test Vehicle after Test 611801-04-2	86
Figure 7.26. Interior of Test Vehicle on Impact Side after Test 611801-04-2	86
Figure 7.27 Summary of Results for MASH Test 3-21 on Boy Beam to Concrete	00
Barrier Transition	80
Figure C 1 Vehicle Properties for Test No. 611801_03_1	85
Figure C.1. Vehicle Properties for Test No. 011001-03-1	86
Figure C.2. Exterior Grush Measurements for Test No. 011001-05-1	87
Figure C.4. Sequential Distographs for Test No. 611901 03 1 (Overhead Views) 1	00
Figure C.4. Sequential Photographs for Test No. 611801-03-1 (Overhead Views) 1	80
Figure C.6. Sequential Photographs for Test No. 611801-03-1 (Poor Views)	00
Figure C.7. Vehicle Angular Displacements for Test No. 611801-03-1 (Near Views)	01
Figure C.7. Vehicle Angular Displacements for Test No. 011001-05-1	91
(Apple C.o. Vehicle Longitudinal Accelerometer Trace for Test No. 011001-05-1	02
Figure C. Q. Vehicle Lateral Accelerometer Trace for Test No. 611901-02-1	9Ζ
(Applerameter Lageted at Captor of Crowity)	02
Figure C 10, Vehicle Vertical Appeleremeter Trace for Text No. 611901 02 1	9Ζ
Figure C. 10. Venicle Venical Accelerometer frace for rest No. 611601-03-1	02
(Accelerometer Localed at Center of Gravity)	93
Figure C.1. Venicle Properties for Test No. 611801-03-2	95
Figure D.2. Exterior Grush Measurements for Test No. 611801-03-2.	96
Figure D.3. Occupant Compartment Measurements for Test No. 611801-03-2	97
Figure D.4. Sequential Photographs for Test No. 611801-03-2 (Overnead Views)1	98
Figure D.5. Sequential Photographs for Test No. 611801-03-2 (Frontal Views) 1	99
Figure D.6. Sequential Photographs for Test No. 611801-03-2 (Rear Views)	200
Figure D.7. Vehicle Angular Displacements for Test No. 611801-03-2.	:01
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-03-2	
(Accelerometer Located at Center of Gravity).	202

Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-03-2	
(Accelerometer Located at Center of Gravity).	202
Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-03-2	
(Accelerometer Located at Center of Gravity).	203
Figure E.1. Vehicle Properties for Test No. 611801-04-1	205
Figure E.2. Exterior Crush Measurements for Test No. 611801-04-1.	206
Figure E.3. Occupant Compartment Measurements for Test No. 611801-04-1	207
Figure E.4. Sequential Photographs for Test No. 611801-04-1 (Overhead Views)	208
Figure E.5. Sequential Photographs for Test No. 611801-04-1 (Frontal Views)	209
Figure E.6. Sequential Photographs for Test No. 611801-04-1 (Rear Views)	210
Figure E.7. Vehicle Angular Displacements for Test No. 611801-04-1.	211
Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-04-1	
(Accelerometer Located at Center of Gravity).	212
Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-04-1	
(Accelerometer Located at Center of Gravity).	212
Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-04-1	
(Accelerometer Located at Center of Gravity).	213
Figure F.1. Vehicle Properties for Test No. 611801-04-2.	215
Figure F.2. Exterior Crush Measurements for Test No. 611801-04-2.	216
Figure F.3. Occupant Compartment Measurements for Test No. 611801-04-2	217
Figure F.4. Sequential Photographs for Test No. 611801-04-2 (Overhead Views)	218
Figure F.5. Sequential Photographs for Test No. 611801-04-2 (Frontal Views)	219
Figure F.6. Sequential Photographs for Test No. 611801-04-2 (Rear Views)	220
Figure F.7. Vehicle Angular Displacements for Test No. 611801-04-2	221
Figure F.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-04-2	
(Accelerometer Located at Center of Gravity).	222
Figure F.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-04-2	
(Accelerometer Located at Center of Gravity).	222
Figure F.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-04-2	
(Accelerometer Located at Center of Gravity)	223

LIST OF TABLES

	Page
Table 2.1. Results for Test 3-21 Simulation of Transition to SS barrier	5
Table 2.2. Results for Test 3-20 Simulation of Transition to SS barrier	7
Table 2.3. Simulation Results of Test 3-21 Impacts with Vertical to NJ Transition	9
Table 2.4. Simulation Results of Test 3-20 Impacts with Vertical to NJ Transition	10
Table 3.1. MASH Test 3-20 Occupant Risk Results	18
Table 3.2. MASH Test 3-21 Occupant Risk Results	18
Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3	
Transition System.	26
Table 4.2. Evaluation Criteria Required for MASH Testing.	28
Table 6.1. Concrete Strength.	39
Table 6.2. Impact Conditions for MASH 3-20, 611801-03-1	40
Table 6.3. Exit Parameters for MASH 3-20, 611801-03-1	40
Table 6.4. Weather Conditions 611801-03-1	42
Table 6.5. Vehicle Measurements 611801-03-1	43
Table 6.6. Events during Test 611801-03-1.	44
Table 6.7. Damage to Concrete Parapet Shape Transition 611801-03-1	44
Table 6.8. Occupant Compartment Deformation 611801-03-1	48
Table 6.9. Exterior Vehicle Damage 611801-03-1.	48
Table 6.10. Occupant Risk Factors for Test 611801-03-1	49
Table 6.11. Impact Conditions for MASH 3-21 611801-03-2	51
Table 6.12. Exit Parameters for MASH 3-21 611801-03-2	51
Table 6.13. Weather Conditions 611801-03-2	53
Table 6.14. Vehicle Measurements 611801-03-2	54
Table 6.15. Events during Test 611801-03-2.	55
Table 6.16. Damage to Concrete Parapet Shape Transition 611801-03-2	55
Table 6.17. Occupant Compartment Deformation 611801-03-2	59
Table 6.18. Exterior Vehicle Damage 611801-03-2.	59
Table 6.19. Occupant Risk Factors for Test 611801-03-2	60
Table 7.1. Concrete Strength.	66
Table 7.2. Soil Strength Before Test 611801-04-1.	66
Table 7.3. Soil Strength Before Test 61801-04-2.	66
Table 7.4. Impact Conditions for MASH TEST 3-20, Crash Test 611801-04-1	67
Table 7.5. Exit Parameters for MASH TEST 3-20, Crash Test 611801-04-1	67
Table 7.6. Weather Conditions 611801-04-1	69
Table 7.7. Vehicle Measurements for Test 611801-04-1	70
Table 7.8. Events during Test 611801-04-1.	71
Table 7.9. Post Soil Gap and Displacement of the Box Beam to Concrete Barrier	
Transition for Test 611801-04-1	71
Table 7.10. Deflection and Working Width of the Box Beam to Concrete Barrier	
Transition for Test 611801-04-1	71
Table 7.11. Occupant Compartment Deformation 611801-04-1	75
Table 7.12. Exterior Vehicle Damage 611801-04-1.	75
Table 7.13. Occupant Risk Factors for Test 611801-04-1	76
•	

Table 7.14. Impact Conditions for MASH TEST 3-21, Crash Test 611801-04-2	. 79
Table 7.15. Exit Parameters for MASH TEST 3-21, Crash Test 611801-04-2	. 79
Table 7.16. Weather Conditions 611801-04-2	. 81
Table 7.17. Vehicle Measurements 611801-04-2	. 82
Table 7.18. Events during Test 611801-04-2.	. 83
Table 7.19. Post Soil Gap and Displacement of the Box Beam to Concrete Barrier	
Transition for Test 611801-04-2.	. 83
Table 7.20. Deflection and Working Width of the Box Beam to Concrete Barrier	
Transition for Test 611801-04-2.	. 83
Table 7.21. Occupant Compartment Deformation 611801-04-2	. 87
Table 7.22. Exterior Vehicle Damage 611801-04-2.	. 87
Table 7.23. Occupant Risk Factors for Test 611801-04-2	. 88
Table 9.1. Assessment Summary for MASHTL-3 Tests on the Concrete Parapet	
Shape Transition.	. 91
Table 9.1. Assessment Summary for MASH TL-3 Tests on the Box Beam	
Transition to Concrete Parapet.	. 92

List of Abbreviations

A2LA	American Association for Laboratory Accreditation
AASHTO	American Association of State Highway and Transportation Officials
ASI	Acceleration Severity Index
CDC	Collision Deformation Classification
CG	Center of Gravity
CIP	Critical Impact Point
FE	Finite Element
FHWA	Federal Highway Administration
ft	feet
HSS	Hollow Structural Section
IS	Impact Severity
ISO	International Standards Organization
lb	pounds
lbf	pounds force
kip-ft	thousand foot pounds
LON	Length of Need
MASH	Manual for Assessing Safety Hardware
mi/h	miles per hour
NIST	National Institute of Standards Technology
OCDI	Occupant Compartment Deformation Index
OIV	Occupant Impact Velocity
psi	pounds pressure per square inch
RA	(Occupant) Ridedown Acceleration
TDAS	Tiny Data Acquisition System
THIV	Theoretical Head Impact Velocity
TL-3	Test Level 3
TRAP	Test Risk Assessment Program
TTI	Texas A&M Transportation Institute
VDS	Vehicle Damage Scale
WYDOT	Wyoming Department of Transportation
х	Longitudinal
У	Lateral
Z	Vertical

Chapter 1. INTRODUCTION

1.1. BACKGROUND

The Wyoming Department of Transportation (WYDOT) Mission Statement is to "provide a safe, high quality and efficient transportation system." One of the goals within the mission statement is to "improve safety on the state transportation system." Implementation of roadside safety devices that comply with the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* is an important part of achieving this goal. *MASH* prescribes the performance criteria that a device must meet when impacted under specified impact conditions (1). Full implementation of *MASH*-compliant roadside safety devices will provide an enhanced level of safety that will help reduce the severity of roadway departure crashes that represent over 75 percent of highway fatalities in Wyoming.

This research addresses one important element of roadside safety design—the transition from an approach roadside guardrail to a bridge rail. The purpose of the transition section is to transition the stiffness from the more flexible approach guardrail to the more rigid bridge rail. Stiffness transitions provide continuity of motorist safety from *MASH* guardrail systems to *MASH* bridge rail systems. A stiffness transition has two distinct transition points that need to be considered in the design process. The first is the transition from the approach guardrail to the upstream end of the transition section. The second is the transition from the downstream end of the transition section to the bridge rail. A transition design and its connection details must include consideration of strength to resist impact loads and geometry to reduce vehicle snagging potential from both directions of travel (i.e., onto and off the bridge structure). Variables in transition design include the size and thickness of the rail element(s), post size, post spacing, and post embedment depth. A lower rub-rail or curb element below the primary transition rail is another design consideration.

1.2. OBJECTIVE

This project was jointly funded by WYDOT and Montana DOT with the objective of developing MASH Test Level 3 (TL-3) compliant nonproprietary approach guardrail transition systems. The objective of this phase of the project was to develop a *MASH* Test Level 3 (TL-3) compliant transition from box beam approach guardrail to a vertical concrete parapet. Shape transitions were developed to transition the vertical concrete parapet to which the transition was attached to other concrete barrier profiles that have been used or are planned for use by WYDOT.

1.3. WORK PLAN

The work plan for this phase of the project consisted of five tasks that relate to the design, analysis, testing, evaluation, and documentation of Concrete Parapet Shape Transitions and box beam guardrail transition to concrete parapet. Tasks included transition conceptualization and design, finite element (FE) modeling and impact

simulations, test installation construction, full-scale crash testing in accordance with *MASH* TL-3 criteria, and deliverable preparation. Details of this research are described herein.

Chapter 2. CONCRETE PARAPET SHAPE TRANSITION DESIGN

2.1. INTRODUCTION

WYDOT desired to use the box-beam guardrail transition to vertical parapet with 42inch-tall single slope (SS) and the 32-inch-tall New Jersey (NJ) profile concrete barriers. Due to the differences in heights and shapes of these concrete bridge rails, special shape transitions were needed. The slopes on the traffic face of the SS and NJ profiles result in wider barriers compared to the vertical parapet profile. Furthermore, there is a 10-inch height difference between the vertical parapet and the SS barrier profile. Shape transitions were needed to allow stable redirection of a vehicle impacting the concrete parapet.

The researchers developed designs for transitioning from the vertical concrete parapet to both the SS barrier profile and NJ profile concrete barriers. One of the design objectives was to minimize the length of the concrete transition parapet, with a goal of 10 ft or less. The researchers used finite element (FE) modeling and simulation to evaluate transition design concepts and determine critical impact points for crash testing. This chapter presents details of the modeling and simulation effort related to the development of the Concrete Parapet Shape Transition designs.

2.2. VERTICAL TO SINGLE SLOPE TRANSITION

The researchers developed a design to transition the shape of a vertical parapet to a SS concrete barrier. The conceptualized transition design is shown in Figure 2.1. The vertical parapet is 32 inches tall and transitions to a 42-inch-tall SS barrier. The box beam transition rails are intended to be attached to the vertical parapet. To allow sufficient room for this connection, the length of the vertical portion of the concrete parapet was selected to be 36 inches. The shape transition section was selected to be 72 inches long, providing an overall parapet length of 9 ft. The height transitioned 10 inches from 32 inches at the vertical parapet end to 42 inches at the SS barrier end. The shape transition from vertical to SS profile was achieved by using two triangular planes on the traffic side, as shown in Figure 2.1.

Figure 2.1 Vertical-to-SS Barrier Shape Transition Design and Impact Points.

2.2.1. Pickup Truck Impact Simulations (MASH Test 3-21)

To evaluate the performance of the Concrete Parapet Shape Transition, the researchers developed a model of the transition parapet and adjacent single slope barrier. All simulations were performed using the finite element (FE) method. LS-DYNA, which is a commercially available general purpose FE software, was used for all the analyses.

The transition section and adjacent barrier were modeled using rigid material representation. A 5,000-lb Dodge RAM pickup truck model was used for the impact simulations. Figure 2.1 shows the three impact points at which the impact simulations were performed. The direction of the vehicle and the location of the impact points was as follows:

- **Vertical to SS:** Vehicle impacting the vertical parapet at the point where the shape transition begins.
- **SS to Vertical CIP1:** Vehicle impacting the SS barrier at the point where the shape transition begins.
- **SS to Vertical CIP2:** Vehicle impacting the SS barrier 2 ft upstream of the point where the shape transition begins.

Figure 2.2 shows the model of the vehicle positioned to impact the barrier and the shape transition for SS to Vertical – CIP2.

Figure 2.2. FE model prior to vehicle impact with shape transition.

The researchers performed impact simulations using MASH Test 3-21 impact conditions for all three impact points described above. This test involves the pickup truck model impacting the barrier system at an impact speed and angle of 62 mi/h and 25 degrees. In all three simulations, the vehicle was successfully contained and redirected. Table 2.1 shows the maximum Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA) values calculated from the simulation data for all three impact points, along with the maximum vehicle roll angle in each simulation. Figure 2.3 shows the vehicles at the point of maximum kinematic instability for each of the impact points simulated.

All three simulations satisfied MASH criteria. The impact from the direction of the vertical parapet to the SS barrier was determined to be the critical impact point for Test 3-21 for this shape transition. This impact point resulted in maximum climb of the vehicle and also had the highest RA value.

Direction of Impact and Impact Point	Max. Ridedown Acceleration (g)	Maximum Occupant Impact Velocity (ft/s)	Maximum Vehicle Roll (degrees)	
Vertical to SS	13.2	28.3	7.2	
SS to Vertical – CIP1	9.9	29.5	8.5	
SS to Vertical – CIP2	9.4	28.0	5.7	

 Table 2.1. Results for Test 3-21 Simulation of Transition to SS barrier.

Figure 2.3. Vehicles at maximum kinematic instability during simulations of various impact points.

2.2.2. Passenger Sedan Impact Simulations (MASH Test 3-20)

The researchers performed impact simulations on the shape transition from the vertical parapet to SS barrier with a small passenger sedan using the impact conditions of MASH Test 3-20. This test involves impacting the transition with a 2,420-lb passenger sedan at an impact speed and angle of 62 mph and 25 degrees. The vehicle model used in the simulations was a Toyota Yaris model.

PLAN VIEW

Figure 2.4. Impact Points for Test 3-20 Simulations of the Vertical to SS Barrier Shape Transition.

Figure 2.4 shows the three impact points at which the impact simulations with MASH Test 3-20 conditions were performed. The direction of the vehicle and the location of the impact points were as follows:

- **Vertical to SS:** Vehicle impacting the vertical parapet at the point where the shape transition begins.
- **SS to Vertical CIP1:** Vehicle impacting the SS barrier at the point where the shape transition begins.
- **SS to Vertical CIP2:** Vehicle impacting the SS barrier 1.5 ft upstream of the point where the shape transition begins.

In all three simulations, the vehicle was successfully contained and redirected. Table 2.2 shows the results of the maximum Occupant Impact Velocity (OIV), Ridedown Acceleration (RA), and vehicle roll angle in each simulation.

Direction of Impact and Impact Point	Max. Ridedown Acceleration (g)	Maximum Occupant Impact Velocity (ft/s)	Maximum Vehicle Roll (degrees)	
Vertical to SS	6.4	40.3	12.8	
SS to Vertical – CIP1	15.0	30.6	8.4	
SS to Vertical – CIP2	12.1	29.2	10.4	

Table 2.2. Results for Test 3-20 Simulation of Transition to SS barrier.

Figure 2.5 shows the vehicles at the point of maximum kinematic instability for each of the impact points simulated for the passenger sedan. The impact from the direction of the vertical parapet to the SS barrier resulted in slightly greater vehicle instability. It also had the highest OIV and vehicle roll, and was thus selected to be the critical impact point for Test 3-20 for this shape transition.

Single Slope to Vertical - CIP2

Figure 2.5. Vehicles at maximum kinematic instability during simulations of various impact points.

2.3. VERTICAL TO NEW JERSEY SAFETY SHAPE TRANSITION

The researchers also developed a design to transition the shape between a vertical parapet and a NJ profile concrete barrier. This transition design is shown in Figure 2.6. The 32-inch-tall vertical parapet transitioned to a 32-inch-tall NJ profile barrier. The length of the vertical parapet was selected to be 36 inches to allow connection of the box beam approach transition. The shape transition section was 72 inches long, providing an overall parapet length of 9 ft. The shape transition from vertical to NJ profile was achieved using triangular planes on the traffic side, as shown in Figure 2.6.

Figure 2.6. Vertical to NJ Barrier Shape Transition Design and Impact Points.

2.3.1. Pickup Truck Impact Simulations (MASH Test 3-21)

The researchers performed impact simulations with the shape transition from vertical to NJ profile barrier with a pickup truck model using the impact conditions of MASH Test 3-21. This test involves a 5,000-lb pickup truck impacting the transition at an impact speed and angle of 62 mph and 25 degrees. Figure 2.6 shows the three impact points at which the impact simulations were performed. The direction of the vehicle and the location of the impact points were as follows:

- **Vertical to NJ:** Vehicle impacting the vertical parapet at the point where the shape transition begins.
- **NJ to Vertical CIP1:** Vehicle impacting the NJ barrier at the point where the shape transition begins.
- **NJ to Vertical CIP2:** Vehicle impacting the NJ barrier 2 ft upstream of the point where the shape transition begins.

In all three simulations, the vehicle was successfully contained and redirected and MASH criteria were satisfied. Table 2.3 shows the maximum OIV, RA, and vehicle roll angle from each simulation.

Direction of Impact and Impact Point	Maximum Occupant Impact Velocity (ft/s)	Maximum Ride Down Acceleration (g)	Maximum Vehicle Roll (deg.)	
Vertical to NJ	27.6	12.2	15.4	
NJ to Vertical – CIP1	29.4	9.6	11.2	
NJ to Vertical – CIP2	29.9	11.0	10.3	

Figure 2.7. Vehicles at maximum kinematic instability during simulations of various impact points.

Figure 2.7 shows the vehicles at their approximate points of maximum kinematic instability for each of the impact points simulated. The overall stability of the vehicle and its kinematics during and after the impact were similar for all three impact points. The impact from the direction of the vertical parapet to the NJ barrier resulted in slightly greater vehicle instability. It also had the highest RA and vehicle roll, and was thus selected to be the critical impact point for Test 3-21 for this shape transition.

2.3.2. Small Sedan Impact Simulations (MASH Test 3-20)

The researchers also performed impact simulations with the shape transition from the vertical parapet to the NJ profile barrier with a small passenger sedan using the impact conditions of MASH Test 3-20. Figure 2.6 shows the three impact points at which the impact simulations with MASH Test 3-20 conditions were performed. The direction of the vehicle and the location of the impact points were as follows.

- **Vertical to NJ:** Vehicle impacting the vertical parapet at the point where the shape transition begins.
- **NJ to Vertical CIP1:** Vehicle impacting the NJ barrier at the point where the shape transition begins.
- **NJ to Vertical CIP2:** Vehicle impacting the NJ barrier 1.5 ft upstream of the point where the shape transition begins.

In all three simulations, the vehicle was successfully contained and redirected, and MASH criteria were satisfied. Table 2.4 shows the maximum OIV, RA, and vehicle roll for each simulation.

Direction of Impact and Impact Point	Maximum Occupant Impact Velocity (ft/s)	Maximum Ride Down Acceleration (g)	Maximum Vehicle Roll (deg.)		
Vertical to NJ	30.4	5.6	20.7		
NJ to Vertical – CIP1	31.2	9.5	10.0		
NJ to Vertical – CIP2	30.6	12.2	17.1		

Table 2.4. Simulation Results of Test 3-20 Impacts with Vertical to NJ Transition.

NJ to Vertical – CIP2

Figure 2.8. Vehicles at maximum kinematic instability during simulations of various impact points.

Figure 2.8 shows the vehicles at their approximate points of maximum kinematic instability for each of the impact points simulated. The overall stability of the vehicle and its kinematics during and after the impact were similar for all three impact points. The impact from the direction of the vertical parapet to the NJ barrier resulted in slightly greater vehicle instability and also had the highest vehicle roll. In comparison, the impact "NJ to Vertical – CIP2" had slightly less roll angle, about same OIV, and higher RA. While both impact points were contenders for the critical impact point and direction, the researchers believe that vehicle stability should be given precedence over occupant risk in the case of the shape transition. Since the impact from the vertical to NJ barrier resulted in higher roll, the researchers selected this location to be the critical impact point and direction for Test 3-20 for this shape transition.

2.4. **CRASH TESTING RECOMMENDATIONS**

Ideally, both shape transition systems could be crash tested for MASH Test 3-20 and Test 3-21. However, the scope of the current project included testing one of the two shape transition systems. Subject to this constraint, the research team developed the recommendations for crash testing presented below.

2.4.1. MASH Test 3-21

For Test 3-21 with a pickup truck, the research team considered the transition from vertical to NJ barrier to be more critical since it had higher maximum vehicle roll and similar maximum OIV and RA to the transition from vertical to SS barrier. Even though the OIV and RA of the vertical to SS transition were slightly higher, vehicle stability was considered a more important factor for the shape transitions. Therefore, for Test 3-21, the researchers recommended testing the vertical to NJ barrier transition. The critical impact point, as discussed previously, was the point where the vertical parapet starts transitioning to the NJ profile barrier. The direction of impact for this point was from the vertical parapet to the NJ profile barrier.

2.4.2. MASH Test 3-20

For Test 3-20 with a small passenger sedan, the point on the vertical parapet at the beginning of the SS shape transition had an OIV that was at the MASH threshold of 40 ft/s. On the other hand, the vehicle roll angle for the transition from vertical to NJ barrier was 7.9 degrees higher than the vehicle roll for the vertical to SS barrier transition.

The small car simulation model is known to be conservative in predicting OIV values. Thus, even though the OIV value for the vertical to SS transition was at the MASH threshold, it was expected to stay within the MASH limits in a crash test. Furthermore, as mentioned previously, vehicle stability is usually a more critical design factor compared to occupant risk for rigid concrete barrier shape transitions. Therefore, the research team recommended testing the vertical to NJ profile barrier transition for Test 3-20. The critical impact point was where the shape transition starts at the end of the vertical parapet. The direction of impact was from the vertical parapet to the NJ profile barrier.

Chapter 3. BOX BEAM TRANSITION TO CONCRETE PARAPET DESIGN

3.1. INTRODUCTION

The research team utilized finite element computer simulations to design and investigate the impact performance of an approach transition from box beam guardrail to a vertical concrete parapet. The transition system was evaluated in accordance with *MASH* TL-3 impact conditions and criteria.

The box beam guardrail transition to vertical concrete parapet consists of components and details similar to those utilized in the box beam guardrail transition to C2P bridge rail (2). Figure 3.1 and Figure 3.2 show elevation view and plan views of the box beam transition concept, respectively. The box beam rail is supported by strong steel posts, and the spacing of the posts decreases as the concrete parapet is approached. A rub rail is present below the box beam rail to help reduce vehicle snagging on the strong transition posts and parapet end. The box beam transition is connected to a 32-inch vertical concrete parapet. The shape transition on the concrete parapet was not included in these simulations as the purpose was to investigate the transition from the box beam rail to the vertical concrete parapet. Figure 3.3 shows the entire transition system including the parapet.

Figure 3.1. Box Beam Rail Section – Elevation View.

Figure 3.2. Box Beam Rail Section – Plan View.

Figure 3.3. Box Beam Transition to Concrete Parapet.

The box beam rail and lower rub rail are attached to the concrete parapet using two anchors on each rail. The first anchor for each rail is located 6 inches from the parapet edge and the second anchor for each rail is located 12 inches from the parapet edge. Each rail has a tapered end to mitigate snagging in a reverse direction impact. The tapered end of the wider upper box beam rail is additionally covered with a plate. Figure 3.4 shows the transition connection at the parapet. The anchors are not shown.

Figure 3.4. Box Beam Transition Connection.

3.2. DESIGN MODIFICATIONS

Design changes were made to the box beam transition section to address performance issues identified during the computer simulation effort. Details of these modifications are documented below. After the box beam transition design was finalized, simulations were performed at different locations on the final design to determine the critical impact locations for *MASH* testing.

3.2.1. Anchor Bolts

The initial computer simulations indicated satisfactory performance for MASH Test 3-20 and Test 3-21 evaluation criteria. However, deformation of the box beam rail led to exposed connection bolts that could snag the impacting vehicle. Figure 3.5 shows the exposed bolts resulting from local deformation of the box beam rail during one of the MASH Test 3-21 simulation runs.

Figure 3.5. Exposed Anchor Bolts.

To mitigate the potential for bolt head snagging, the bolt anchors going into the concrete parapet were modified. The bolt heads were moved off the traffic face of the box beam rail to the inside of the box beam rail. Figure 3.6 shows the modified anchor bolt with the head of the bolt located inside the rail. This eliminates the potential for vehicle snagging on the bolts.

Figure 3.6. Modified Anchor Bolts.

The modification of the bolted connection did prevent vehicle snagging. However, the new connection detail permitted more rotational movement and deflection of the box beam rail. This additional deflection resulted in rollover of the pickup truck vehicle. Figure 3.7 shows the deflection of the box beam rail after the pickup truck impact.

Figure 3.7. Deflection of System with Modified Anchor Bolts.

3.2.2. Additional W6x9 Steel Posts

The box beam transition section was stiffened to reduce the dynamic deflection through the addition of a W6x9 post in the downstream transition region. Additionally, the length of the W6x9 posts was increased from 72 inches to 78 inches. Figure 3.8 shows the modified transition system.

Figure 3.8. Box Beam Transition with 78-inch W6x9 posts.

In the subsequent MASH Test 3-21 simulation, the pickup truck did not roll over onto its side, but the roll of the pickup truck was significant as it exited the system. Figure 3.9 shows an image from the simulation at the time the pickup truck is at its maximum roll angle.

Figure 3.9. Pickup Truck at Maximum Roll Angle.

3.2.3. HSS4x3 Rubrail

It was desired to further reduce this roll angle to increase confidence in the impact performance of the transition system prior to performing full-scale crash tests. It was observed that during the deflection of the transition system, the rubrail extends beyond the main box beam rail in the lateral direction. Figure 3.10 shows the deflection of the transition system from overhead.

The box beam transition design was further modified by changing the rubrail from an HSS6x2 rail member to an HSS4x3 rail member. The traffic face of this rubrail section is inset two inches from the traffic face of the box beam rail. In addition to the modified rubrail, a smaller HSS tube was placed inside the main rail and spanned from the end of the rail at the parapet to the first steel post. Part of this added HSS tube was the addition of a third anchor bolt for the main rail. Figure 3.11 shows the updated overall transition system.

Figure 3.10. Deflection of Box Beam Transition System.

Figure 3.11. Box Beam Transition with HSS4x3 Rubrail.

The stability of the pickup truck was improved in the simulation with the HSS4x3 rubrail. Figure 3.12 shows a comparison of the maximum pickup truck roll angle for the HSS6x2 rubrail and HSS4x3 rubrail.

Figure 3.12. HSS6x2 (left) and HSS4x3 (right) Pickup Truck at Maximum Roll Angle.

3.3. FINAL EVALUATION AND CIP DETERMINATION

Simulations were conducted on the final transition design to verify performance of the system for MASH Tests 3-20 and 3-21 evaluation criteria. Additionally, simulations were conducted at different impact locations for each test condition to determine the critical impact location for full-scale crash testing.

The two primary MASH evaluation factors are structural adequacy and occupant risk. In all simulations, the vehicle was successfully contained and redirected. Table 3.1 and Table 3.2 show the occupant risk values for the simulations of MASH Tests 3-20 and 3-21, respectively.

CIP Location	OIV-x (m/s)	OIV-y (m/s)	RDA-x (g's)	RDA-y (g's)	Roll (°)	Pitch (°)	Yaw (°)
2ft upstream of Parapet End	5.2	8.9	-4	-14.2	6.3	-4.1	-27.4
<i>3ft upstream of Parapet End</i>	5.8	8.8	-4.5	-8.9	7.2	-4.6	-35.9
4ft upstream of Parapet End	6.5	9.4	-3.9	-13.3	9	-5.2	-39.8
5ft upstream of Parapet End	6.7	9.8	-4.6	-15.1	10.4	-5.2	-44.8
6ft upstream of Parapet End	7	9.8	-5.3	-16.2	9.9	-4.6	-44.5

Table 3.1. MASH Test 3-20 Occupant Risk Results.

CIP Location	OIV-x (m/s)	OIV-y (m/s)	RDA- x (g's)	RDA- y (g's)	Roll (°)	Pitch (°)	Yaw (°)
6ft upstream of Parapet End	7	9.2	-5.8	-10.8	24.8	-18.5	- 38.5
7ft upstream of Parapet End	7.1	9.5	-7.3	-10.1	34.9	-19	- 55.2
8ft upstream of Parapet End	6.6	8.9	-8.2	10	43	-11.3	- 59.9
9ft upstream of Parapet End	6.2	8.6	-7.5	-10.1	35.3	-11.1	- 43.4
10ft upstream of Parapet End	5.9	8.3	8	-9.6	36.2	-12.8	- 43.9

Table 3.2. MASH Test 3-21 Occupant Risk Results.

For MASH Test 3-20, the CIP was determined to be 5 ft upstream of the parapet end. This simulation resulted in one of the higher OIV and RDA metrics and had the highest roll angle. The impact point 6 ft upstream of the parapet end had similar high OIV and RDA metrics, but there was less potential for vehicle interaction with the parapet end.

For MASH Test 3-21, the CIP was determined to be 7 ft upstream of the parapet end. This simulation resulted in the highest OIV, roll angle, and pitch angle.

3.4. UPSTREAM TRANSITION EVALUATION

It was initially planned for the design details of the upstream end of the box beam approach guardrail transition to vertical concrete parapet to be similar to those of the MASH compliant box beam transition to C2P bridge rail that was developed under Phase I of this research (2). This system incorporated an HSS6×2 rubrail, and specific termination details for that rubrail at the upstream end of the transition. However, as described above, the rubrail in the box beam transition to vertical concrete parapet was
changed to an HSS4×3 to address stability concerns with the pickup truck observed in the impact simulations.

Consequently, a decision was made to evaluate the MASH impact performance of the upstream end of the transition with the HSS4x3 rubrail modification using computer simulation. MASH Test 3-20 and Test 3-21 computer simulations were performed on the upstream end of the transition system with the HSS4x3 rubrail and associated termination details.

0.00 s

0.25 s

0.50 s

0.25 s

0.50 s

0.75 s

Figure 3.14 show sequential images for Test 3-20 and Test 3-21 impact simulations, respectively. The impact locations were the same as those conducted in the previous crash tests (2).

For both simulations, the occupant risk values were below the MASH limits. In the MASH Test 3-20 impact simulation, the vehicle interacted longer with the transition system and did not exit as quickly compared to the original HSS6×2 rubrail system. However, the 1100C passenger car remained stable throughout the impact event, and the research team considered the performance of the upstream transition system with an HSS4×3 rubrail to be satisfactory.

0.00 s

0.25 s

0.50 s

Figure 3.13. MASH 3-20 Simulation – Upstream Section with HSS4x3 Rubrail.

Figure 3.14. MASH 3-21 Simulation – Upstream Section with HSS4x3 Rubrail.

3.5. SUMMARY

Finite element computer simulations were performed to analyze the crashworthiness of a transition system from box beam approach guardrail to a vertical concrete parapet. The impact simulations of the initial transition system concept showed significant snagging potential with the anchor bolts attaching the box beam rail to the concrete parapets. Design modifications were made to the system to improve its impact performance.

After the design was finalized, *MASH* Test 3-20 and Test 3-21 impact simulations were conducted on both the upstream and downstream end to evaluate the transition system according to *MASH* TL-3 criteria and select critical impact points for crash testing.

Overall, the modified box beam transition design to vertical concrete parapet performed acceptably for MASH TL-3 evaluation criteria.

Chapter 4. TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1. CRASH TEST MATRIX

Table 4.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for transitions. The target critical impact points (CIPs) for each test were determined using finite element simulation. Figure 4.1 shows the target CIPs for *MASH* Tests 3-20 and 3-21 on the concrete parapet shape transition. Figure 4.2 shows the target CIPs for *MASH* Tests 3-20 and 3-21 on the box beam guardrail transition to concrete parapet.

Table 4.1. Test Conditions and Evaluation Criteria Specified for MAS	<i>SH</i> TL-3
Transition System.	

Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
3-20	1100C	62 mi/h	25°	A, D, F, H, I
3-21	2270P	62 mi/h	25°	A, D, F, H, I

Figure 4.1. Target CIP for *MASH* TL-3 Tests on Concrete Parapet Shape Transition.

Figure 4.2. Target CIP for MASH TL-3 Tests on Box Beam Guardrail Transition to Concrete Parapet.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 5 presents brief descriptions of these procedures.

4.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2A and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 4.1 lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 4.2 provides detailed information on these evaluation criteria.

Evaluation Factors	Evaluation Criteria
A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.
1.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.

Table 4.2. Evaluation Criteria Required for MASH Testing.

Chapter 5. TEST CONDITIONS

5.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing of the transitions was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

5.2. VEHICLE TOW AND GUIDANCE SYSTEM

Each vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

5.3. DATA ACQUISITION SYSTEMS

5.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a 16-channel Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors,

measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCOTM 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ±1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the data from the TDAS Pro to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

5.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side for tests with the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the tests with the 2270P pickup truck.

5.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One located overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the Box Beam Guardrail Transition to Concrete Parapet. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 6. CRASH TESTING OF CONCRETE PARAPET SHAPE TRANSITION

6.1. CONCRETE PARAPET SHAPE TRANSITION DETAILS

6.1.1. Test Article and Installation Details

The test installation consisted of two independent 9-ft long concrete parapets with a 2inch open joint between them. The upstream parapet had a vertical profile over the first 3 ft of length followed by a shape transition from a vertical to New Jersey profile over the last 6 ft. The downstream parapet had a New Jersey profile throughout its length. Both parapets were anchored to a separate steel reinforced concrete approach slab.

Figure 6.1 presents overall information on the Concrete Parapet Shape Transition, and Figure 6.2 thru Figure 6.5 provide photographs of the installation for crash tests 611801-03-1 and 611801-03-2. Section A.1. in Appendix A provides further details on the Concrete Parapet Shape Transition. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

6.1.2. Design Modifications during Tests

No modifications were made to the installation during the testing phase.

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Figure 6.1. Details of the Concrete Parapet Shape Transition.

Figure 6.2. Concrete Parapet Shape Transition prior to Testing 611801-03-1&2.

Figure 6.3. Concrete Parapet Shape Transition at Impact Prior to Testing 611801-03-1&2.

Figure 6.4. End View of the Concrete Parapet Shape Transition Prior to Testing 611801-03-1&2.

Figure 6.5. Field Side of the Concrete Parapet Shape Transition prior to Testing 611801-03-1&2.

6.1.3. Material Specifications

Appendix B provides material certification documents for the materials used to install/construct the Concrete Parapet Shape Transition. Table 6.1 shows the average compressive strengths of both the parapet and approach slab concrete on the day of the first test (2022-09-15).

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location
Approach Slab	4000	4070	93	100% of Deck
Parapet	4000	4367	77	100% of Parapet

Table 6.1. Concrete Strength.

6.2. MASH TEST 3-20 (CRASH TEST NO. 611801-03-1)

6.2.1. Test Designation and Actual Impact Conditions

See Table 6.2 for details on impact conditions for this test, and Table 6.3 for the exit parameters. Figure 6.6 and Figure 6.7 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.1
Impact Angle (deg)	25	±1.5°	24.9
Impact Severity (kip-ft)	51	≥51 kip-ft	55.7
Impact Location	36 inches downstream from the upstream end of the concrete parapet.	± 12 inches	36 inches downstream from the upstream end of the concrete parapet.

Table 6.2. Impact Conditions for MASH 3-20, 611801-03-1.

Table 6.3. Exit Parameters for *MASH* 3-20, 611801-03-1.

Exit Parameter	Measured
Speed (mi/h)	52.7
Trajectory angle (deg)	5
Heading angle (deg)	9
Brakes applied post impact (s)	Not applied
Vehicle at rest position	155 ft downstream of impact point74 ft to the traffic side90° counter-clockwise rotation
Comments:	Vehicle remained upright and stable. Vehicle crossed exit box ^a 62 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.6. Concrete Parapet Shape Transition/Test Vehicle Geometrics for Test 611801-03-1.

Figure 6.7. Concrete Parapet Shape Transition/Test Vehicle Impact Location 611801-03-1.

6.2.2. Weather Conditions

Table 6.4 provides the weather conditions for 611801-03-1.

Date of Test	2022-09-15 AM
Wind Speed (mi/h)	4
Wind Direction (deg)	100
Temperature (°F)	84
Relative Humidity (%)	63
Vehicle Traveling (deg)	195

Table 6.4. Weather Conditions 611801-03-1.

6.2.3. Test Vehicle

Figure 6.8 and Figure 6.9 show the 2016 Nissan Versa used for the crash test. Table 6.5 shows key vehicle measurements. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 6.8. Impact Side of Test Vehicle before Test 611801-03-1.

Figure 6.9. Opposite Impact Side of Test Vehicle before Test 611801-03-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Test Inertial Weight (lb)	2420	±55	2437
Gross Static Weight ^a (lb)	2585	±55	2602
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	±8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	41.2
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

Table 6.5. Vehicle Measurements 611801-03-1.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.2.4. Test Description

Table 6.6 lists events that occurred during Test No. 611801-03-1. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted installation
0.0330	Vehicle began to redirect
0.0390	Barrier began to lean toward field side
0.0460	Windshield began to fracture due to body flexing and torsion from impact
0.0600	Barrier leaned maximum amount (1 inch) to field side
0.0740	Front and rear driver's side tires left the pavement
0.1660	Vehicle was parallel with installation
0.1830	Rear passenger bumper impacted barrier
0.2740	Vehicle exited the installation at 52.7mi/h with a heading angle of 8.8 degrees and a trajectory angle of 4.9 degrees

Table 6.6. Events during Test 611801-03-1.

6.2.5. Damage to Test Installation

There was a crack along the traffic side toe of the upstream parapet at the deck, and there was some scuffing at the impact point. Table 6.7 describes the damage to the Concrete Parapet Shape Transition. Figure 6.10 and Figure 6.11 show the damage to the Concrete Parapet Shape Transition.

Table 6.7. Damage to Concrete Parapet Shape Transition 611801-03-1.

Test Parameter	Measured
Permanent Deflection/Location	3% inches toward field side, at the parapet joint
Dynamic Deflection	1 inch toward field side
Working Width a and Height	21.6 inches, at a height of 36.6 inches

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.10. Concrete Parapet Shape Transition after Test at Impact Location 611801-03-1.

Figure 6.11. Concrete Parapet Shape Transition after Test at the Parapet Joint 611801-03-1.

6.2.6. Damage to Test Vehicle

Figure 6.12 and Figure 6.13 show the damage sustained by the vehicle. Figure 6.14 and Figure 6.15 show the interior of the test vehicle. Table 6.8 and Table 6.9 provide details on the occupant compartment deformation and exterior vehicle damage. Tables

C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 6.12. Impact Side of Test Vehicle after Test 611801-03-1.

Figure 6.13. Rear Impact Side of Test Vehicle after Test 611801-03-1.

Figure 6.14. Overall Interior of Test Vehicle after Test 611801-03-1.

Figure 6.15. Interior of Test Vehicle on Impact Side after Test 611801-03-1.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	2.3 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	2 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	5 inches
Front Door (above Seat)	≤9.0 inches	5 inches
Front Door (below Seat)	≤12.0 inches	0 inches

 Table 6.8. Occupant Compartment Deformation 611801-03-1.

Table 6.9. Exterior Vehicle Damage 611801-03-1.

Side Windows	The right front window shattered due to stresses from the flexing of the car door during impact.
Maximum Exterior	8 inches in the front plane at the right front corner just above
Deformation	bumper neight
VDS	01RFQ4
CDC	01FREW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, right front strut and tower, right front tire and rim, right front quarter fender, windshield, right A-pillar, right front door and glass, right front floor pan, roof, right rear door, right rear rim, right rear quarter fender, right tail light, and rear bumper were all damaged. The windshield had a 46-inch by 28-inch break that had a maximum depth of 2.3 inches which was caused by the flexing of the vehicle during impact and not due to penetration of the test article. The right front door had a 6-inch gap at the top. The roof had two dents at the B-pillar. One measured 5 inches by 8 inches by 0.5 inches deep, and the other 6 inches square and 0.5 inches deep.

6.2.7. Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.10. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.6 in Appendix C.4 show acceleration versus time traces.

Test Parameter	MASH ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	21.4	0.0771 seconds on right side of interior
	30.0		
OIV, Lateral (ft/s)	≤40.0	31.2	0.0771 seconds on right side of interior
	30.0		
Ridedown, Longitudinal (g)	≤20.49	3.2	0.0771 - 0.0871 seconds
	15.0		
Ridedown, Lateral (g)	≤20.49	9.0	0.1994 - 0.2094 seconds
	15.0		
THIV (m/s)	N/A	11.6	0.0756 seconds on right side of interior
ASI	N/A	2.6	0.0484 - 0.0984 seconds
50-ms MA Longitudinal (g)	N/A	-12.2	0.0188 - 0.0688 seconds
50-ms MA Lateral (g)	N/A	-19.5	0.0240 - 0.0740 seconds
50-ms MA Vertical (g)	N/A	3.5	0.0000 - 0.0500 seconds
Roll (deg)	≤75	20	0.4740 seconds
Pitch (deg)	≤75	17	0.7250 seconds
Yaw (deg)	N/A	104	4.9999 seconds

 Table 6.10. Occupant Risk Factors for Test 611801-03-1.

F. Values in italics are the preferred MASH values

6.2.8. Test Summary

Figure 6.16 summarizes the results of *MASH* Test 611801-03-1.

Test				Test Agency	Texas	exas A&M Transportation Institute (TTI)				
the Martin			Test Standard/Test No. MAS				H 2016, Test 3-20			
States and			TTI Project No. 6				1801-03-1			
	SH-	1	Test Date 2022				-09-15			
			TEST ARTICLE							
			Type Tra			Trans	ition Syst	em		
					Name	Concr	ete Para	pet Shape Transition		
a la se participation and			Length 18 fe				et			
0.00	00 s		Key Materials			32-inc wide o	32-inch-high concrete parapet and 60-inch wide concrete deck			
alkia.			Soil Type and Condition C			Concr	Concrete, damp			
March Cont			TEST VEHICLE							
	an	bolly-Mill	Type/Designation 1100				С			
AND		-	Year, Make and Model 2016				Nissan Versa			
	Carl Trans	- And		In	ertial Weight (lb)	2437				
		a series of the series			Dummy (lb)	165				
					Gross Static (lb)	2602				
0.20	0 s		IMPACT	CONDI	TIONS					
				Impa	act Speed (mi/h)	62.1				
				Im	pact Angle (deg)	24.9				
			Impact Location 36 i				nches downstream from the upstream end the concrete parapet.			
	to a			Impac	t Severity (kip-ft)	55.7				
			EXIT CONDITIONS							
Aria			Exit Speed (mi/h) 52.7							
1-1- Star			Trajecto	ory/Head	ding Angle (deg)	5/9	9			
E			Exit Box Criteria	Vehic	Vehicle crossed					
				St	opping Distance	155 ft 74 ft t	downstre	eam fic side		
0.40	0 s		TEST AR	TICLE	DEFLECTIONS	•				
	- Xilay -			D	ynamic (inches)	1				
			Permanent (inches) 3/8				∛8			
	and the second s	0	Working	g Width	/Height (inches)	21.6/36.6				
	in the set		VEHICLE	VEHICLE DAMAGE						
			VDS 01			01RF	01RFQ4			
			CDC			01FREW3				
				Max. B	Ext. Deformation	8				
0.600 s Max Occupant Compartment Deformation 5 in			5 inch	inches at the side panel and in the door.						
			OC	CUPAN	T RISK VALUES					
Long. OIV (ft/s)	21.4	Long. Ride	down (g)	3.2	Max 50-ms Lon	g. (g)	-12.2	Max Roll (deg)	20	
Lat. OIV (ft/s)	31.2	Lat. Rided	own (g)	9.0	Max 50-ms Lat.	(g)	-19.5	Max Pitch (deg)	17	
THIV (m/s)	11.6	ASI		2.6	Max 50-ms Ver	t. (g)	3.5	Max Yaw (deg)	104	
-	1	155' —						-10-	r 1-1/2	
		↓ ↓ <u>_</u> =	11.7' Exit Angle		- ⊢ 3.0'				** 32*	
Impact Angle				RIO						
74' Heading Angle Exit Angle Box										
					-[]]		/ ľ			
↓ 8								<u>9////////////////////////////////////</u>	∠///t₁o- 	
L							-	50		

Figure 6.16. Summary of Results for *MASH* Test 3-20 on Concrete Parapet Shape Transition.

6.3. MASH TEST 3-21 (CRASH TEST NO. 611801-03-2)

6.3.1. Test Designation and Actual Impact Conditions

See Table 6.11 for details on impact conditions for this test, and Table 6.12 for the exit parameters. Figure 6.17 and Figure 6.18 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62 mi/h	± 2.5 mi/h	62.6
Impact Angle (deg)	25°	± 1.5°	24.3
Impact Severity (kip-ft)	106 kip-ft	≥106 kip-ft	111.2
Impact Location	36 inches downstream from the upstream end of the concrete parapet.	± 12 inches	43.2 inches downstream from the upstream end of the concrete parapet.

Table 6.11. Impact Conditions for MASH 3-21 611801-03-2.

Table 6.12. Exit Parameters for *MASH* 3-21 611801-03-2.

Exit Parameter	Measured
Speed (mi/h)	49.4
Trajectory angle (deg)	2
Heading angle (deg)	7
Brakes applied post impact (s)	2.4
Vehicle at rest position	189 ft downstream of impact point7 ft to the field side90° clockwise rotation
Comments:	Vehicle remained upright and stable. Vehicle crossed exit box a 101 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.17. Concrete Parapet Shape Transition/Test Vehicle Geometrics for Test 611801-03-2.

Figure 6.18. Concrete Parapet Shape Transition/Test Vehicle Impact Location 611801-03-2.

6.3.2. Weather Conditions

Table 6.13 provides the weather conditions for 611801-03-2.

Date of Test	2022-09-28 AM
Wind Speed (mi/h)	5
Wind Direction (deg)	137
Temperature (°F)	81
Relative Humidity (%)	37
Vehicle Traveling (deg)	195

Table 6.13. Weather Conditions 611801-03-2.

6.3.3. Test Vehicle

Figure 6.19 and Figure 6.20 show the 2016 RAM 1500 used for the crash test. Table 6.14 shows key vehicle measurements. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 6.19. Impact Side of Test Vehicle before Test 611801-03-2.

Figure 6.20. Opposite Impact Side of Test Vehicle before Test 611801-03-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Test Inertial Weight (lb)	5000	± 110	5011
Gross Static Weight ^a (lb)	5000	± 110	5011
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.29
CG above Ground ^{c,d} (inches)	28	≥28	28.5

 Table 6.14. Vehicle Measurements 611801-03-2.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.3.4. Test Description

Table 6.15 lists events that occurred during Test No. 611801-03-2. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.
Time (s)	Events		
0.0000	Vehicle impacted installation		
0.0250	Concrete Barrier began to lean toward field side		
0.0470	Vehicle began to redirect		
0.0830	Front drivers side tires left the pavement		
0.1030	Barrier leaned maximum amount (3.7 inches) to field side		
0.1170	Rear drivers side tires left the pavement		
0.2080	Vehicle was parallel with installation		
0.2100	Rear passenger bumper impacted barrier		
0.4150	Vehicle exited the installation at 49.4 mi/h with a heading angle of 7.5 degrees and a trajectory angle of 1.9 degrees		

Table 6.15. Events during Test 611801-03-2.

6.3.5. Damage to Test Installation

The upstream parapet was leaning 0.3° back from vertical prior to impact. After impact, it was leaning 3.0° back. The offset of the two parapets along the top field side edge enlarged from $\frac{3}{8}$ -inch to $2\frac{5}{8}$ inches. There was significant damage to the concrete at the top of the joint with rebar exposed on the upstream end of the downstream parapet. The impacted parapet was pushed back $\frac{1}{2}$ -inch at grade and was raised up $\frac{1}{2}$ -inch at the joint on the traffic side.

Table 6.16 describes the damage to the Concrete Parapet Shape Transition. Figure 6.21 and Figure 6.22 show the damage to the Concrete Parapet Shape Transition.

 Table 6.16. Damage to Concrete Parapet Shape Transition 611801-03-2.

Test Parameter	Measured		
Permanent Deflection/Location	2.25 inches toward field side, at the downstream end of the upstream parapet.		
Dynamic Deflection	3.7 inches toward field side, at the downstream end of the upstream parapet.		
Working Width ^a and Height	29.6 inches, at a height of 62.2 inches (corresponding to the right-side mirror of the vehicle)		

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.21. Concrete Parapet Shape Transition after Test at Impact Location 611801-03-2.

Figure 6.22. Concrete Parapet Shape Transition after Test at the Parapet Joint 611801-03-2.

6.3.6. Damage to Test Vehicle

Figure 6.23 and Figure 6.24 show the damage sustained by the vehicle. Figure 6.25 and Figure 6.26 show the interior of the test vehicle. Table 6.17 and Table 6.18 provide details on the occupant compartment deformation and exterior vehicle damage. Tables

D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 6.23. Impact Side of Test Vehicle after Test 611801-03-2.

Figure 6.24. Rear Impact Side of Test Vehicle after Test 611801-03-2.

Figure 6.25. Overall Interior of Test Vehicle after Test 611801-03-2.

Figure 6.26. Interior of Test Vehicle on Impact Side after Test 611801-03-2.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0.0 inches
Windshield	≤3.0 inches	0.0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0.0 inches
Foot Well/Toe Pan	≤9.0 inches	3.5 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0.0 inches
Side Front Panel	≤12.0 inches	2.5 inches
Front Door (above Seat)	≤9.0 inches	1.5 inches
Front Door (below Seat)	≤12.0 inches	0.0 inches

 Table 6.17. Occupant Compartment Deformation 611801-03-2.

Table 6.18. Exterior Vehicle Damage 611801-03-2.

Side Windows	Side windows remained intact		
Maximum Exterior	12 inches in the front plane at the right front corner at bumper		
Deformation	height		
VDS	01RFQ4		
CDC	01FREW3		
Fuel Tank Damage	None		
Description of Damage to Vehicle:	The front bumper, grill, right and left headlight, right front quarter fender, windshield, right front door, right front floor pan, right front tire and rim, right rear door, right cab corner, right rear quarter fender, right rear tire and rim, and rear bumper were damaged. The windshield had some minor stress fractures, which were caused by the flexing of the vehicle during impact and not due to penetration of the test article, and the right front door had a 4-inch gap at the top.		

6.3.7. Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.19. Figure D.3 in Appendix D.3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D.4 show acceleration versus time traces.

Test Parameter	MASH ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	23.9	0.0957 seconds on right side of interior
	30.0		
OIV, Lateral (ft/s)	≤40.0	25.2	0.0957 seconds on right side of interior
	30.0		
Ridedown, Longitudinal (g)	≤20.49	4.4	0.1019 - 0.1119 s
	15.0		
Ridedown, Lateral (g)	≤20.49	7.2	0.2417 - 0.2517 s
	15.0		
THIV (m/s)	N/A	9.7	0.0932 seconds on right side of interior
ASI	N/A	1.8	0.0576 - 0.1076 s
50-ms MA Longitudinal (g)	N/A	-11.0	0.0470 - 0.0970 s
50-ms MA Lateral (g)	N/A	-13.2	0.0322 - 0.0822 s
50-ms MA Vertical (g)	N/A	-2.6	0.0030 - 0.0530 s
Roll (deg)	≤75	36	0.6788 s
Pitch (deg)	≤75	10	0.6729 s
Yaw (deg)	N/A	45	1.0096 s

 Table 6.19. Occupant Risk Factors for Test 611801-03-2.

F. Values in italics are the preferred MASH values

6.3.8. Test Summary

Figure 6.27 summarizes the results of *MASH* Test 611801-03-2.

			1						
Test Agency			Texas A&M Transportation Institute (TTI)						
			Test Standard/Test No. MAS			MASH	H 2016, Test 3-21		
			TTI Project No. 61180			01-03-2			
			Test Date 2022-0				09-28		
			TEST AR	TICLE		ī			
		the state of the s			Туре	Transition System			
	-		Name			Concr	Concrete Parapet Shape Transition		
Production of the second second			Length 18			18	8		
0.00	00 s				Key Materials	32-inc wide o	h-high co concrete	oncrete parapet and 60 deck	<i>i</i> -inch
	50		Soil Type and Condition Cor			Concr	ncrete, damp		
A	E		TEST VE	HICLE		ī			
A A A A A A A A A A A A A A A A A A A				Т	ype/Designation	2270	P		
		RE		Year, I	Make and Model	2016	RAM 150	0	
Chinkland Strange	11.00	Sarding .		In	ertial Weight (lb)	5011			
State Contractor and		-			Dummy (lb)	N/A			
and the second se	1				Gross Static (lb)	5011			
0.20)0 s		IMPACT	CONDI	TIONS	ī			
				Imp	act Speed (mi/h)	62.6			
				Im	pact Angle (deg)	24.3			
	Min an				Impact Location	43.2 ii end o	inches downstream from the upstream of the concrete parapet.		
A UP				Impac	t Severity (kip-ft)	111.2			
	Ser. 1 1	2. 4	EXIT CO	NDITIO	NS	ī			
	Steeling - March	<u> </u>		E	xit Speed (mi/h)	49.4			
Contraction of the second		a landad	Trajecto	ory/Hea	ding Angle (deg)	2/7			
and the second second			Exit Box Criteria Cross			ed			
ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE	1	and a second	Stopping Distance 189			189 ft	ft downstream		
			7 ft t			7 ft to	the field	side	
0.40	JUS		Dynamic (inches) 3.7			07			
	anonen		Dynamic (inches) 3.7			3.7			
	1		Permanent (Inches) 21/4						
1	1. Ja		Working Width / Height (inches) 29.6			29.67	62.2		
		The -				0405	2.4		
			VDS 01F			01RF			
Contraction Contraction		a series and a series of the s				01FR	01FREW3		
and the second	-		Max. Ext. Deformation 12			12 Inc	nes		
0.60	00 s		Max Occupant Compartment Deformation 3 inc			3 inch	es in the	kick panel	
			000	CUPAN	T RISK VALUES				
Long. OIV (ft/s)	23.9	Long. Ride	down (g)	4.4	Max 50-ms Long	g. (g)	-11.0	Max Roll (deg)	36
Lat. OIV (ft/s)	25.2	Lat. Rided	own (g)	7.2	Max 50-ms Lat.	(g)	-13.2	Max Pitch (deg)	10
THIV (m/s)	9.7	ASI		1.8	Max 50-ms Vert	. (g)	-2.6	Max Yaw (deg)	45
		——————————————————————————————————————	Ex	14.6' it Angle	3.6'			F F F	5 5 5 7 7 7 7 8 8 7 7 8 8 8 8 8 8 8 8 8
			Ī	RID					
			1						
			-	-77		3" 0"			
					└─ Exit Angle			<u> 14 14 14 14 14 14 14 14 14 14 14 14 14 </u>	1 0"
							-	60"	→

Figure 6.27. Summary of Results for *MASH* Test 3-21 on Concrete Parapet Shape Transition.

Chapter 7. CRASH TESTING OF BOX BEAM GUARDRAIL TRANSITION TO CONCRETE PARAPET

7.1. CONCRETE PARAPET SHAPE TRANSITION DETAILS

7.1.1. Test Article and Installation Details

The test installation consisted of the previously described concrete transition parapet, box beam stiffness transition, box beam guardrail, and box beam guardrail anchorage. The upstream concrete transition parapet was reconstructed prior to the box beam transition tests. The spacing of the anchorage bars was reduced from 6 inches to 5 inches to increase strength and reduce maintenance for direct impacts.

The box beam stiffness transition consisted of an HSS $6 \times 6 \times 3/16$ -inch upper traffic rail and an HSS $4 \times 3 \times 1/4$ -inch lower rub-rail mounted on steel posts of different sizes and spacing using steel angle brackets. The top of the traffic rail was 28 inches above grade, and the top of the rub-rail was at 14 inches above grade. The rub-rail turned back and down at post 17 and was secured to the field side of post 16 near grade level. The transition rails were bolted to the vertical portion of the concrete transition parapet. The ends of the rails were tapered to mitigate vehicle snagging in reverse-direction impacts. A 36-inch long, HSS $5 \times 5 \times 1/4$ -inch stiffening sleeve was inserted inside the downstream end of the HSS $6 \times 6 \times 3/16$ -inch upper traffic rail.

The 72 ft of box beam guardrail attached to the upstream end of the transition was comprised of an HSS $6\times6\times3/16$ -inch rail mounted 28 inches above grade and attached to S3x5.7 posts with 8x24-inch soil plates using L5x3½-inch angle brackets. The 23-ft 5-inch-long terminal section was comprised of a single HSS $6\times6\times3/16$ -inch rail that turned down between posts 1 and 2 and was anchored to an unreinforced concrete block via anchor bolts cast into the block.

Figure 7.1 presents overall information on the Box Beam Guardrail Transition to Concrete Parapet, and Figure 7.2 thru Figure 7.5 provide photographs of the installation for crash tests 611801-04-1 and 6110801-04-2 prior to testing. Section A.2. in Appendix A provides further details on the Box Beam Guardrail Transition to Concrete Parapet. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

7.1.2. Design Modifications during Tests

No modifications were made to the installation during the testing phase.

Figure 7.1. Details of Box Beam Guardrail Transition to Concrete Parapet.

Figure 7.2. Box Beam Guardrail Transition to Concrete Parapet prior to Testing 611801-04-1&2.

Figure 7.3. Box Beam Guardrail Transition to Concrete Parapet at Impact Prior to Testing 611801-04-1&2.

Figure 7.4. Box Beam Guardrail Transition to Concrete Parapet at the Box Beam Transition prior to Testing 611801-04-1&2.

Figure 7.5. Field Side of the Box Beam Guardrail Transition to Concrete Parapet prior to Testing 611801-04-1&2.

7.1.3. Material Specifications

Appendix B provides material certification documents for the materials used to install/construct the Box Beam Guardrail Transition to Concrete Parapet. Table 7.1 shows the average compressive strengths of the reconstructed concrete transition parapet and approach slab on the day of the first box beam transition test (2023-03-23).

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location
Reconstructed Approach Slab	4000	5657	44	100% of Deck
Reconstructed Parapet	4000	5083	33	100% of Parapet

Table 7.1	. Concrete	Strength.
-----------	------------	-----------

7.1.4. Soil Conditions

The test installation was installed in standard soil meeting Type 1 Grade D of AASHTO standard specification M147-17 "Materials for Aggregate and Soil Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of each crash test. During installation of the Box Beam Guardrail Transition to Concrete Parapet for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the Box Beam Guardrail Transition to Concrete Parapet using the same fill materials and installation procedures used in the test installation and the standard dynamic test.

The minimum post loads are shown in and

On the day of Test 3-20, 2023-03-23, loads obtained from the post pull test are shown in Table 7.2. The soil in which the Box Beam Guardrail Transition to Concrete Parapet was installed met minimum *MASH* requirements for soil strength.

Displacement (in)	Minimum Load (Ib)	Actual Load (Ib)
5	4420	10,242
10	4981	10,060
15	5282	10,152

Table 7.2. Soil Strength Bef	ore Test 611801-04-1.
------------------------------	-----------------------

On the day of Test 3-21, 2023-03-30, loads obtained from the post pull test are shown in Table 7.3. The soil in which the Box Beam Guardrail Transition to Concrete Parapet was installed met minimum *MASH* requirements for soil strength.

Displacement (in)	Minimum Load (Ib)	Actual Load (lb)				
5	4420	8545				
10	4981	9515				
15	5282	10,181				

7.2. MASH TEST 3-20 (CRASH TEST 611801-04-1)

7.2.1. Test Designation and Actual Impact Conditions

See Table 7.4 for details of impact conditions for this test and Table 7.5 for the exit parameters. Figure 7.6 and Figure 7.7 depict the target impact setup.

Table 7.4. Impact Conditions for MASH TEST 3-20, Crash Test 611801-04-1.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.8
Impact Angle (deg)	25	±1.5°	25.0
Impact Severity (kip-ft)	51	≥51 kip-ft	55.8
Impact Location60 inches upstream from the end of the concrete parapet		±12 inches	59.7 inches upstream from the end of the concrete parapet

Exit Parameter	Measured
Speed (mi/h)	48.0
Trajectory angle (deg)	4.5
Heading angle (deg)	5.9
Brakes applied post impact (s)	1.6
Vehicle at rest position	118 ft downstream of impact point7 ft to the traffic side175° left
Comments:	Vehicle remained upright and stable. Vehicle did not cross the exit box.

Table 7.5. EXIT Parameters for MASH TEST 3-20, Grash Test 611801-04-1

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 7.6. Box Beam to Concrete Barrier Transition/Test Vehicle Geometrics for Test 611801-04-1.

Figure 7.7. Box Beam to Concrete Barrier Transition/Test Vehicle Impact Location 611801-04-1.

7.2.2. Weather Conditions

Table 7.6 provides the weather conditions for 611801-04-1.

Date of Test	2023-03-23 AM
Wind Speed (mi/h)	13
Wind Direction (deg)	198
Temperature (°F)	76
Relative Humidity (%)	84
Vehicle Traveling (deg)	195

Table 7.6. Weather Conditions 611801-04-1.

7.2.3. Test Vehicle

Figure 7.8 and Figure 7.9 show the 2017 Nissan Versa used for the crash test. Table 7.7 shows key vehicle measurements. Figure E.1 in Appendix E.1 gives additional dimensions and information on the vehicle.

Figure 7.8. Impact Side of Test Vehicle before Test 611801-04-1.

Figure 7.9. Opposite Impact Side of Test Vehicle before Test 611801-04-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Test Inertial Weight (lb)	2420	±55	2448
Gross Static Weight ^a (lb)	2585	±55	2613
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	±8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.8
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	41.9
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

Table 7.7. Vehicle Measurements for Test 611801-04-1.

Note: N/A = not applicable; CG = center of gravity. ^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

° For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.2.4. Test Description

Table 7.8 lists events that occurred during Test 611801-04-1. Figures E.4, E.5, and E.6 in Appendix E.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted installation
0.0290	Vehicle began to redirect
0.0250	Posts 25 and 26 began to lean toward field side
0.0280	Posts 27 and 28 began to lean toward field side
0.0500	Windshield began to fracture due to body flexing and torsion from the impact
0.1800	Vehicle was parallel with installation
0.3240	Vehicle exited the installation at 48 mi/h with a heading angle of 5.9 degrees and a trajectory angle of 4.5 degrees

Table 7.8. Events during Test 611801-04-1.

7.2.5. Damage to Test Installation

The rails were scuffed at impact, and the traffic rail was deformed at post 27. The parapet was also scuffed. Table 7.9 provides the post soil gap and lean after the test. t/s: traffic side; f/s: field side

Table 7.10 describes the deflection and working width of the Box Beam to Concrete Barrier Transition. Figure 7.10 and Figure 7.11 show the damage to the Box Beam to Concrete Barrier Transition.

Table 7.9. Post Soil Gap and Displacement of the Box Beam to Concrete Barrie
Transition for Test 611801-04-1.

Post #	Soil Gap	Post Lean from Vertical
23	Soil Disturbed	0.0°
24	⅓-inch t/s & f/s	0.3°
25	⅓-inch t/s & ¼-inch f/s	0.3°
26	⅓-inch t/s & ¼-inch f/s	0.4°
27	1/4-inch f/s	0.4°
28	⅓-inch t/s	0.3°

t/s: traffic side; f/s: field side

Table 7.10. Deflection and Working Width of the Box Beam to Concrete Barrier
Transition for Test 611801-04-1.

Test Parameter	Measured
Permanent Deflection/Location	0.25 inches toward field side at post 27
Dynamic Deflection	1.3 inches toward field side, top of rail at post 26
Working Width ^a and Height	17.0 inches at a height of 32.0 inches, representing the top field side edge of the concrete barrier

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other

words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.10. Box Beam to Concrete Barrier Transition at Impact Location after Test 611801-04-1.

Figure 7.11. Overall View of the Box Beam to Concrete Barrier Transition after Test 611801-04-1.

7.2.6. Damage to Test Vehicle

Figure 7.12 and Figure 7.13 show the damage sustained by the vehicle. Figure 7.14 and Figure 7.15 show the interior of the test vehicle. Table 7.11 and Table 7.12 provide details on the occupant compartment deformation and exterior vehicle damage. Figures E.2 and E.3 in Appendix E.1 provide exterior crush and occupant compartment measurements.

Figure 7.12. Impact Side of Test Vehicle after Test 611801-04-1.

Figure 7.13. Door on the Impact Side of Test Vehicle after Test 611801-04-1.

Figure 7.14. Overall Interior of Test Vehicle after Test 611801-04-1.

Figure 7.15. Interior of Test Vehicle on Impact Side after Test 611801-04-1.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0.0 inches
Windshield	≤3.0 inches	Video shows cracking in the windshield due to the vehicle impacting the barrier, however, the majority of the windshield damage was from a secondary impact with an object not part of the test. This can be seen in the Real Time video.
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0.0 inches
Foot Well/Toe Pan	≤9.0 inches	1.0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0.0 inches
Side Front Panel	≤12.0 inches	1.0 inches
Front Door (above Seat)	≤9.0 inches	3.0 inches
Front Door (below Seat)	≤12.0 inches	0.0 inches

Table 7.11. Occupant Compartment Deformation 611801-04-1.

Table 7.12. Exterior Vehicle Damage 611801-04-1.

Side Windows	The front side window on the impact side was shattered due to the flexing of the vehicle during impact, and not from contact with or penetration of the test article
Maximum Exterior Deformation	10 inches in the front plate at the right front corner at bumper height.
VDS	01RFQ5
CDC	01FREW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, right front strut and tower, right front tire and rim, right front quarter fender, right front door, right front floor pan, right rear door, right rear quarter fender, right rear rim, and right rear bumper were damaged. The right front door had a 5.25-inch gap at the top. From the video we can tell the windshield was cracked from the resultant vehicle body flexing due to the initial impact. After exiting the installation, the vehicle impacted a neighboring installation, which caused damage on the side opposite of impact with the target installation, and a rupture was also created in the windshield. The results of this secondary hit are not recorded in this report, with the exception of the vehicle damage photographs.

7.2.7. Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.13. Figure E.7 in Appendix E.3 shows the vehicle angular displacements, and Figures E.8 through E.10 in Appendix E.4 show acceleration versus time traces.

Test Parameter	MASH ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	22.1	0.0798 seconds on right side of
	30.0		interior
OIV, Lateral (ft/s)	≤40.0	33.5	0.0798 seconds on right side of
	30.0		interior
Ridedown, Longitudinal (g)	≤20.49	3.6	0.0962 - 0.1062 seconds
	15.0		
Ridedown, Lateral (g)	≤20.49	7.2	0.1981 - 0.2081 seconds
	15.0		
Theoretical Head Impact	N/A	12.3	0.0786 seconds on right side of
Velocity (THIV) (m/s)			interior
Acceleration Severity	N/A	2.7	0.0530 - 0.1030 seconds
Index (ASI)			
50-ms Moving Avg.		10 -	
Accelerations (MA)	N/A	-12.7	0.0278 - 0.0778 seconds
	N 1/A	40.0	0.0050 0.0750 /
50-ms MA Lateral (g)	N/A	-19.8	0.0253 - 0.0753 seconds
50-ms MA Vertical (g)	N/A	4.3	0.0015 - 0.0515 seconds
Roll (deg)	≤75	4.8	0.0468 seconds
Pitch (deg)	≤75	4.7	0.2602 seconds
Yaw (deg)	N/A	36.4	0.4401 seconds

 Table 7.13. Occupant Risk Factors for Test 611801-04-1.

F. Values in italics are the preferred MASH values

7.2.8. Test Summary

Figure 7.16 summarizes the results of MASH Test 611801-04-1.

					T / A	-			-1)
			Test Agency		lexas	A&M I rai	nsportation Institute (1)	1)	
Test Standard/			ndard/Test No.	MASH	2016, Te	st 3-20			
4		TTI Project No.			611801-04-1				
and the second	(Aller				Test Date	2023-0	3-23		
CARE AND AND	1 stal		TEST ART	ICLE					
				Туре	Transition System				
				Name	Box Be	am to Co	oncrete Barrier Transitio	n	
		Length			165 ft 5	inches			
0.00	00 s		Key Materials			32-inch concret Steel tr	h-high concrete parapet and 60-inch wide ete deck. Steel box beam and rub rail. transition posts		
			Soil Type and Condition			AASHT Concre	O M147- te	17 Type 1 Grade D Cru	ushed
N. W.	ter)	N 10	TEST VEH	IICLE		1			
	No.	and the second		Ty	pe/Designation	1100C			
		The second	Y	'ear. M	ake and Model	2017 N	issan Ve	rsa	
The second second	-27			Ine	tial Weight (lb)	2448			
	and the second second	A real of the local distance of the local di			Dummy (lb)	165			
Contraction of the second	No. of Concession, Name			G	ross Static (lb)	2613			
0.20)0 s	100 million (100 million)	IMPACT C			2010			
0.20				Impad	t Speed (mi/h)	61.8			
				Impa	act Angle (deg)	25.0			
, ,				59.7 in	59.7 inches upstream from the end of the				
the second second		Impact Location co		concret	e parape	t			
To late de		Impact Severity (kip-ft) 55.8							
		EXIT CONDITIONS							
			Ex	it Speed (mi/h)	48.0				
		Trajectory/Heading Angle (deg) 4.5 / 5			4.5 / 5.	9			
Carlos and a second		Exit Box Criteria Vehicle			Vehicle	did not d	cross the exit box.		
		Stopping Distance 118 ft		118 ft c	lownstrea	am			
0.400 s			510	pping Distance	7 ft to t	he traffic	side		
			TEST ART		DEFLECTIONS				
		-	Dynamic (inches)			1.3			
the second and		-	Permanent (inches)		0.25				
	K		Working Width / Height (inches)			17.0/3	32.0		
	Nor .	Contraction of the	VEHICLE DAMAGE						
115	1 Martin		VDS		01RFQ	5			
		the total	CDC		01FRE	01FREW3			
Contraction of the second	and the second	and the second s	Max. Ext. Deformation (inches)		10	10			
0.600 s		Max Oc	cupan	t Compartment Deformation	3 inche	s in the s	ide panel		
			000	UPAN	RISK VALUES	5			
Long. OIV (ft/s)	22.1	Long. Ride	down (g)	3.6	Max 50-ms Lo	ng. (g)	-12.7	Max Roll (deg)	4.8
Lat. OIV (ft/s)	33.5	Lat. Rided	own (g)	7.2	Max 50-ms La	t. (g)	-19.8	Max Pitch (deg)	4.7
THIV (m/s)	12.3	ASI	(0)	2.7	Max 50-ms Ve	ert. (g)	4.3	Max Yaw (deg)	36.4
7' T T T T T T T T T T T T T			2		20 14 0 Section A.A Section B.B Section B.B Se				

Figure 7.16. Summary of Results for *MASH* Test 3-20 on Box Beam to Concrete Barrier Transition.

7.3. MASH TEST 3-21 (CRASH TEST 611801-04-2)

7.3.1. Test Designation and Actual Impact Conditions

See Table 7.14 for details of impact conditions for this test and Table 7.15 for the exit parameters. Figure 7.17 and Figure 7.18 depict the target impact setup.

Table 7.14. Impact Conditions for MASH TEST 3-21, Crash Test 611801-04-2.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.1
Impact Angle (deg)	25	±1.5°	25.0
Impact Severity (kip-ft)	106	≥106 kip-ft	116.3
Impact Location	84 inches upstream from the edge of the concrete parapet	±12 inches	83.8 inches upstream from the end of the concrete parapet

Table 7.15. Exit Parameters f	for MASH TEST 3-21,	Crash Test 611801-04-2.
-------------------------------	---------------------	-------------------------

Exit Parameter	Measured
Speed (mi/h)	52.1
Trajectory angle (deg)	4.1
Heading angle (deg)	8.1
Brakes applied post impact (s)	2.2
Vehicle at rest position	193 ft downstream of impact point17 ft to the traffic side60° right
Comments:	Vehicle remained upright and stable Vehicle crossed the exit box 57 feet downstream from loss of contact

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 7.17. Box Beam to Concrete Barrier Transition/Test Vehicle Geometrics for Test 611801-04-2.

Figure 7.18. Box Beam to Concrete Barrier Transition/Test Vehicle Impact Location 611801-04-2.

7.3.2. Weather Conditions

Table 7.16 provides the weather conditions for 611801-04-2.

Date of Test	2023-03-30 AM
Wind Speed (mi/h)	11
Wind Direction (deg)	156
Temperature (°F)	70
Relative Humidity (%)	90
Vehicle Traveling (deg)	195

 Table 7.16. Weather Conditions 611801-04-2.

7.3.3. Test Vehicle

Figure 7.19 and Figure 7.20 show the 2017 RAM 1500 used for the crash test. Table 7.17 shows key vehicle measurements. Figure F.1 in Appendix F.1 gives additional dimensions and information on the vehicle.

Figure 7.19. Impact Side of Test Vehicle before Test 611801-04-2.

Figure 7.20. Opposite Impact Side of Test Vehicle before Test 611801-04-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Test Inertial Weight (lb)	5000	±110	5051
Gross Static Weight ^a (lb)	5000	±110	5051
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.7
CG above Ground ^{c,d} (inches)	28	≥28	28.6

Table 7.17. Vehicle Measurements 611801-04-2.

Note: N/A = not applicable; CG = center of gravity. ^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

° For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.3.4. Test Description

Table 7.18 lists events that occurred during Test 611801-04-2. Figures F.4, F.5, and F.6 in Appendix F.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted installation
0.0320	Vehicle began to redirect
0.0170	Posts 23 thru 27 began to lean toward field side
0.0230	Posts 28 began to lean toward field side
0.1660	Vehicle was parallel with installation
0.2890	Vehicle exited the installation at 52.1 mi/h with a heading angle of 8.2 degrees and a trajectory angle of 4.1 degrees

Table 7.18. Events during Test 611801-04-2.

7.3.5. Damage to Test Installation

The box-beam and rub rail were scuffed and deformed at the impact location. Table 7.19 describes the post soil gap and lean after the test. Table 7.20 describes the deflection and working width of the Box Beam to Concrete Barrier Transition. Figure 7.21 and Figure 7.22 show the damage to the Box Beam to Concrete Barrier Transition.

 Table 7.19. Post Soil Gap and Displacement of the Box Beam to Concrete Barrier

 Transition for Test 611801-04-2.

Post #	Soil Gap	Post Lean from Vertical
21	Soil Disturbed	0.0°
22	¼-inch t/s & ⅓ f/s	0.5°
23	¼-inch t/s & ⅓ f/s	1.0°
24	³ ⁄ ₄ -inch t/s & ³ ⁄ ₈ - inch f/s	1.0°
25	1/2-inch t/s & 1/4-inch f/s	1.1°
26	5∕₅-inch t/s & ⅔-inch f/s	1.3°
27	Soil Disturbed	1.0°
28	Soil Disturbed	1.0°

t/s: traffic side; f/s: field side

Table 7.20. Deflection and Working Width of the Box Beam to Concrete BarrierTransition for Test 611801-04-2.

Test Parameter	Measured
Permanent Deflection/Location	1 inch toward field side, between posts 25 and 26
Dynamic Deflection	2.5 inches toward field side, at the top of the rail at post 26
Working Width ^a and Height	22.4 inches, at a height of 49.0 inches, corresponding to the vehicle side view mirror

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other

words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.21. Box Beam to Concrete Barrier Transition at Impact Location after Test 611801-04-2.

Figure 7.22. Overall View of the Box Beam to Concrete Barrier Transition after Test 611801-04-2.

7.3.6. Damage to Test Vehicle

Figure 7.23 and Figure 7.24 show the damage sustained by the vehicle. Figure 7.25 and Figure 7.26 show the interior of the test vehicle. Table 7.21 and Table 7.22 provide details on the occupant compartment deformation and exterior vehicle damage. Figures F.2 and F.3 in Appendix F.1 provide exterior crush and occupant compartment measurements.

Figure 7.23. Impact Side of Test Vehicle after Test 611801-04-2.

Figure 7.24. Rear Impact Side of Test Vehicle after Test 611801-04-2.

Figure 7.25. Overall Interior of Test Vehicle after Test 611801-04-2.

Figure 7.26. Interior of Test Vehicle on Impact Side after Test 611801-04-2.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0.0 inches
Windshield	≤3.0 inches	0.0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0.0 inches
Foot Well/Toe Pan	≤9.0 inches	3.0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0.0 inches
Side Front Panel	≤12.0 inches	0.0 inches
Front Door (above Seat)	≤9.0 inches	2.0 inches
Front Door (below Seat)	≤12.0 inches	0.0 inches

 Table 7.21. Occupant Compartment Deformation 611801-04-2.

Table 7.22. Exterior Vehicle Damage 611801-04-2.

Side Windows	The side windows remained intact
Maximum Exterior Deformation	14 inches in the front plane at the right front corner at bumper height
VDS	01RFQ4
CDC	01FREW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, right and left headlights, radiator and support, right front quarter fender, right front door, right front floor pan, right rear door, right cab corner, right rear quarter fender, right rear tire and rim, and rear bumper were damaged. The fright front door had a 7-inch gap at the top.

7.3.7. Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.23. Figure F.7 in Appendix F.3 shows the vehicle angular displacements, and Figures F.8 through F.10 in Appendix F.4 show acceleration versus time traces.

Test Parameter	MASH ^a	Measured	Time			
OIV, Longitudinal (ft/s)	≤40.0	16.4	0.0925 seconds on right side of			
	30.0		interior			
OIV, Lateral (ft/s)	≤40.0	31.8	0.0925 seconds on right side of			
	30.0		interior			
Ridedown, Longitudinal (g)	≤20.49	5.0	0.1613 – 0.1713 seconds			
	15.0					
Ridedown, Lateral (g)	≤20.49	11.5 0.2142 – 0.2242 seconds				
	15.0					
THIV (m/s)	N/A	10.9	0.0909 seconds on right side of			
			interior			
ASI	N/A	2.2	0.0643 – 0.1143 seconds			
50-ms MA Longitudinal (g)	N/A	-8.7	0.0449 – 0.0949 seconds			
50-ms MA Lateral (g)	N/A	-17.5	0.0423 – 0.0923 seconds			
50-ms MA Vertical (g)	N/A	3.6	(0.1615 - 0.2115 seconds)			
Roll (deg)	≤75	30.6	0.6239 seconds			
Pitch (deg)	≤75	4.1	0.5445 seconds			
Yaw (deg)	N/A	49.4	1.1732 seconds			

 Table 7.23. Occupant Risk Factors for Test 611801-04-2.

F. Values in italics are the preferred MASH values

7.3.8. Test Summary

Figure 7.27 summarizes the results of MASH Test 611801-04-2.

			Test Agency Texa				exas A&M Transportation Institute (TTI)					
E.		andard/Test No.	MASH 2016, Test 3-21									
				TTI Project No.	611801-04-2							
				Test Date	2023-03-30							
			TEST ARTICLE									
		Туре	Transition System									
				Name	Box Beam to Concrete Barrier Transition							
of Balling	Length			165 ft 5 inches								
0.00		Key Materials	32-inch-high concrete parapet and 60-inch wide concrete deck. Steel box beam and rub rail. Steel transition posts									
				e and Condition	AASHTO M147-17 Type 1 Grade D Crushed Concrete							
			TEST VE	HICLE		1						
			Type/Designation 22				2270P					
			Year, Make and Model				2017 RAM 1500					
				ertial Weight (lb)	5051	5051						
A STREET		and the second second		Dummy (lb)	N/A							
State of the local division of the local div		Concession of the local division of the loca			Gross Static (lb)	5051	5051					
0.20	0 s		IMPACT	CONDI	TIONS				i i			
				act Speed (mi/h)	62.1							
		pact Angle (deg)	25.0									
				Impact Location	83.8 inches upstream from the end of the concrete parapet							
			Impact Severity (kip-ft) 116.3									
	EXIT CO	NDITIO	NS									
				xit Speed (mi/h)	52.1							
			Trajectory/Heading Angle (deg)			4.1 / 8.1						
			Exit Box Criteria				Vehicle crossed the exit box 57 feet downstream from loss of contact					
0.400 s			Stopping Distance				193 ft downstream 17 ft to the traffic side					
			TEST ARTICLE DEFLECTIONS									
				ynamic (inches)	2.5							
				manent (inches)	1							
			Working Width / Height (inches) 2				22.4 / 49.0					
			VEHICLE	E DAMA	GE	ī						
				VDS	01RFQ4							
				CDC	01FREW3							
A 1 1 1			Max. Ext. Deformation (inches)			14						
0.600 s			Max Occupant Compartment Deformation				3 inches in the right toe pan					
			000	CUPAN	FRISK VALUES							
Long. OIV (ft/s)	16.4	Long. Ride	down (g)	5.0	Max 50-ms Long	g. (g)	-8.7	Max Roll (deg)	30.6			
Lat. OIV (ft/s)	31.8	Lat. Rided	own (g) 11.5		Max 50-ms Lat. (g)		-17.5	Max Pitch (deg)	4.1			
THIV (m/s)	10.9	ASI		2.2	2.2 Max 50-ms Vert.		3.6	Max Yaw (deg)	49.4			
193'						 ₽		28° 4 28° 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-			
Heading Angle							30° T Section B-B Sect 1:20 Typ @ Pees 2 - 15					

Figure 7.27. Summary of Results for *MASH* Test 3-21 on Box Beam to Concrete Barrier Transition.
Chapter 8. SUMMARY AND CONCLUSIONS

8.1. ASSESSMENT OF TEST RESULTS AND CONCLUSIONS FOR THE CONCRETE PARAPET SHAPE TRANSITION

The crash tests reported in Chapter 6 were performed in accordance with *MASH*TL-3 on the Concrete Parapet Shape Transition.

Table 8.1 shows that the Concrete Parapet Shape Transition met the performance criteria for *MASH* TL-3 longitudinal barriers.

Evaluation Criteria	Description	Test 611801-03-1	Test 611801-03-2
А	Contain, Redirect, or Controlled Stop	S	S
D	No Penetration into Occupant Compartment	S	S
F	Roll and Pitch Limit	S	S
Н	OIV Threshold	S	S
Ι	Ridedown Threshold	S	S
Overall	Summary	Pass	Pass

Table 8.1. Assessment Summary for MASH TL-3 Tests on the Concrete Parapet Shape Transition.

Note: S = Satisfactory; N/A = Not Applicable. ¹See Table 4.2 for details

8.2. ASSESSMENT OF TEST RESULTS AND CONCLUSIONS FOR THE BOX **BEAM TRANSITION TO CONCRETE PARAPET**

The crash tests reported in Chapter 7 were performed in accordance with MASHTL-3 on the Box Beam Transition to Concrete Parapet.

Table 8.1 shows that the Box Beam Transition to Concrete Parapet met the performance criteria for MASH TL-3 longitudinal barriers.

Evaluation Criteria	Description	Test 611801-04-1	Test 611801-04-2
A	Contain, Redirect, or Controlled Stop	S	S
D	No Penetration into Occupant Compartment	S	S
F	Roll and Pitch Limit	S	S
Н	OIV Threshold	S	S
I	Ridedown Threshold	S	S
Overall	Summary	Pass	Pass

Table 8.2. Assessment Summary for MASHTL-3 Tests on the Box Beam Transition to Concrete Parapet.

Note: S = Satisfactory; N/A = Not Applicable. ¹See Table 4.2 for details

Chapter 9. IMPLEMENTATION

This research was a step in WYDOT's efforts to implement MASH to enhance roadside safety and reduce the severity of run-off-road crashes in Wyoming. Specifically, this project addressed the development of a stiffness transition from box beam guardrail to a vertical concrete parapet, and a shape transition of the vertical concrete parapet to a New Jersey profile concrete parapet.

Two different shape transitions were designed and evaluated through finite element impact simulations. These included a 32-inch-tall vertical concrete parapet to a 42-inch-tall single slope concrete parapet, and a 32-inch-tall vertical concrete parapet to a 32-inch-tall New Jersey concrete parapet. MASH criteria were satisfied for both transition systems. The shape transition from vertical to New Jersey profile was selected for full-scale crash testing based on being the more critical of the two shape transitions.

MASH Test 3-20 and Test 3-21 were successfully performed on the Concrete Parapet Shape Transition from vertical to New Jersey profile. The shape transition was accomplished over a length of 6 ft, providing a concrete transition parapet with an overall length of 9 ft including a 3-ft length of vertical parapet for connection of the box beam transition rails. Based on successful finite element simulation and the successful testing of the more critical shape transition from vertical to New Jersey profile, the shape transition from vertical to single slope profile is also considered MASH compliant.

MASH Test 3-20 and Test 3-21 were successfully performed on the downstream end of the box beam guardrail stiffness transition to vertical concrete parapet. It was initially planned for the design details of the upstream end of the transition to be similar to those of the MASH compliant box beam stiffness transition to C2P bridge rail that was developed under Phase I of this research (2). However, during the transition design process, the rubrail size in the box beam transition to vertical concrete parapet was changed from HSS6x2 to HSS4x3 to address stability concerns with the pickup truck observed in the impact simulations.

The other design details and rubrail termination methods used for the HSS4×3 rubrail were like those used in the successfully crash tested box beam transition with HSS6×2 rubrail (2). Additionally, MASH Test 3-20 and Test 3-21 impact simulations were performed on the upstream end of the box beam stiffness transition system with the HSS4x3 rubrail. Both simulations satisfied MASH criteria.

Based on the successful crash testing of a similar upstream transition, and successful MASH impact simulations on the upstream transition with HSS4x3 rubrail, the research team considers the upstream end of the box beam transition to vertical concrete parapet to be MASH compliant. Consequently, the box beam stiffness transition to vertical concrete parapet is considered MASH compliant.

The results of the research can be implemented through issuance of new or updated WYDOT standard plans. This will make the new MASH transition available for use in highway project plans and lettings. Specifically, the MASH box beam transition will supersede Standard Plan 606-6A—Transitions C&D to Concrete Barrier.

Detailed drawings developed for the Concrete Parapet Shape Transitions and box beam guardrail stiffness transition to vertical concrete parapet under this research project can serve as the basis for updating the relevant standard plans. Drawings for the box beam guardrail stiffness transition to vertical concrete parapet and concrete parapet shape transition from vertical to New Jersey profile are presented in Section A.2 in Appendix A. Drawings for the concrete parapet shape transition from vertical to single slope parapet are presented in Appendix G.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- Bligh, R. P., Sheikh, N. M., Schulz, N. D., Kovar, J., Menges, W. L., Schroeder, W., Griffith, B. L., and Wegenast, S., *Development of Approach Guardrail Transition for Box Beam Guardrail System and MGS*, Report No. 611801-02, Wyoming Department of Transportation, Cheyenne, WY, May 2022.

APPENDIX A. DETAILS OF THE CONCRETE PARAPET SHAPE TRANSITION AND THE BOX BEAM TRANSITION TO CONCRETE PARAPET

A.1. DETAILS OF CONCRETE PARAPET SHAPE TRANSITION

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

66

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

106

2023-12-06

- 1-3/8"

19"

Ø 5/8" x 2 Traffic Side flange

Ø 5/8" x 2

Field Side flange

2.330

3.000

----.170

Roadside Safety and Physical Security Division -Proving Ground

Sheet 11 of 21 S3x5.7 Posts

2022-09-14

25"

۲

Section M-M Scale 1:5

11c. Galvanize all components after fabrication is complete.

Type R Post

Elevation View

See 11d

11d. All other details same as Type A Post.

Project #611801-03 Wyoming Box Beam Transition

Texas A&M Transportation

Scale 1:10

Institute

industry standard practices.

Drawn by GES

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

1/8

Type A Post

Elevation View

64"

Plate, 8" x 1/4" x 24"

ASTM A36

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\611801-03 Wyoming DoT - Bligh & Sheikh\Drafting, 611801-03\611801-03 Drawing

117

2023-12-06

118

A.2. DETAILS OF BOX BEAM TRANSITION TO CONCRETE PARAPET

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

2023-03-22

Drawn by GES Scale 1:100 Sheet 3 of 21 Transition Detail Views

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

125

126

TR No. 611801-03 & -04

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

TR No. 611801-03 & -04

130

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting, 611801-04\611801-04 Drawing

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

Charr Charr Charr Charr Charr Charr Charr Contains Contains in With Charles Contains no weld repair contains no weld repair votatins no Mercuny cont anufactured in accordant anufactured in accordant a	Iue 71 1:1ksi 1:1ksi <th></th> <th>Characteristic Elongation Gage Lgth tes Yield to tensile ratio te Yield Strength tes Tensile Strength tes Elongation Gage Lgth tes Yield to tensile ratio tes Yield to tensile ratio tes</th> <th></th> <th>Value 0.15% 0.0.69% 0.0.17% 0.0.22% 0.14% 0.0.36% 0.14% 0.004% 0.004% 0.0003% 0.0012% 0.0003% 0.0003% 0.00012% 0.0003%</th> <th>Characteristic C Mn P S S Si Cu Cr Ni Cu Cr Ni Cu Cr Ni Ni Cu Cr Ni Ni Ni Sn B Ti Ni Cu Cr Sn B Ti Ni Ni Sn B Ti Ni Si Si Si Si Si Si Si Si Si Si Si Si Si</th> <th>HEAT: 1076655</th>		Characteristic Elongation Gage Lgth tes Yield to tensile ratio te Yield Strength tes Tensile Strength tes Elongation Gage Lgth tes Yield to tensile ratio tes Yield to tensile ratio tes		Value 0.15% 0.0.69% 0.0.17% 0.0.22% 0.14% 0.0.36% 0.14% 0.004% 0.004% 0.0003% 0.0012% 0.0003% 0.0003% 0.00012% 0.0003%	Characteristic C Mn P S S Si Cu Cr Ni Cu Cr Ni Cu Cr Ni Ni Cu Cr Ni Ni Ni Sn B Ti Ni Cu Cr Sn B Ti Ni Ni Sn B Ti Ni Si Si Si Si Si Si Si Si Si Si Si Si Si	HEAT: 1076655
55588 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sel Steel Distributors LP 10 W Little York Rd 1ston TX 17041-4917 3379500 6977335	S Inte H 113 P Hou US T 713 0 713	el Distributors LP Little York Rd TX -4917 00	Intsel Stee 11310 W L Houston US 77041- 713937950 71369773		ANG 3 1/2 X 3 1/2x3/8 40 ANG 3 1/2 X 3 1/2x3/8 40 STM A36-19/A529-14 Gr 1 E: 11/13/2021 E: 11/11/2021 E: 11/11/2021 E: 11/11/2021	Order WL SECTION: J GRADE: AS ROLL DATE MELT DATE Cert. No.: 8
a hereby certify rate and confor Marcus W. P	ORT are accur.	oies call	CERTIFIED MILL TE For additional cop 800-637-3227	A 2-3525	EL ALABAM H STREET HAM AL 3521	CMC STE 101 S 50T BIRMING	Y-102557-3 Page:1

STANDARD "I" BEAM A 992 3 X 5.7# X 20'		PO/REL W HEAT	/LY-22-273 : 2118669	80/			C	BL WLY-570445-6	9/9/2022	
018.2880m 	.4x22 060' 00.00"	14x22 045 00.00* 9360X32.9 013.7160m	3X5.7 040,00.00 375X8.5 012.1920m	ascription 1	APSHID : MO ARSHID : MO ASIME : SA-I ASIME : SA-I CSA : C40.2		Sold Io:	JCOR SIFEL - 155 Hagan Av 19er, SC 294 Lone: (843)		
ed on 8' (20. 3',881;1',20; ((cr+Me+V)/5)',5', ((cr+Me+V)/5)',5', est hat the con est results an ce in complian d by the purch	2119019 A992-11(15	1119065 R992-11(15	2118669 A992-11(15	Heat# Grade(s) Cest/Heat JW	S: Tested in a Quality Man 270-345M270-50 36 13 2-11(15:/P36-1 21-44w/G40.21- 21-44w/G40.21-	EDUSION, IX	PO BOX 21119	BERRELEY enue 50 336-6000		
.83 .22cm) gass f(Sit+1.45Sit+1.45Sit+1.45Sit+1.45Sit+1.45Sit+1.45 f(Sit+1.45Sit+1.45) f(S	-85	.86	.81	Yield/ Tensile Ratio	-19 9/A529-1 50w/G40.	77226	ISTRIBUT			
60200 (1799-1990-(1719-2199-(1719-2199-(1719-2199-(1719-2199-(1719-1719)))))))))))))))))))))))))))))))	60400	57900 399 59400 410	53700 370 58000 400	(PSI) (MPA)	e vith A #16 (4-3 9-50/A57 2150VM		ORS			
1,200 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2	70900 2	69700 3 481 69000 2 476	65900 454 70800 488	(psile (Mpa)	STM spec 0-21). 2502111,			10		
8.07 Weid Reg ications 6 accura 6 accura by the m pecifica	7.22	11.03 15.40 54 Pc(s	29.00 24.63 105 Pc(s	flong	cificati. /A7093618		Ship	ERIIFIED		
) 95,04 ======== ===========================		.07 .03 .03 .03	.07	***	on A6/A61 3/A709503	SIDE SIDE	IO: INTS	MILL TE		
Qual the second	83	0.004 1001	.01 155	Mn Mo	M-19 and 18	06728 ION, IX	EL STEEL	SI REPOR tructura nd hot r		
Customer 1) d. (All 1) d. (All 1) depart 1) depart CE2 2 CE2 1) depart CE2	.008	.013 .0045 Customer	.016 .0046 Customer		A370, Ie	77041	DIST E YORK	I section blied to tintent		
PG: WIY	.019	.022 .0002	.021 .0002	ж ж ж ж к с с с с с с с с с с с с с с с	sted in			1014 1014 1014 1014 1014 1014 1014 1014		
2730 2737 al tosti which is Sl)/6)+(.201 .001 .001 .004	.002	N A ST.	accordan			EAF MEL ed by Nu killed a		
(Cr+Mo+V	.14	.08 .028 .028	.09 .015 BoI#: 15	Cu	te with E	B.o.I.	Custon	any poir		
-cb)/5)+((.04	96845 96845	96846	XXXXX XXXXXX CI	N10204-20	#: 15	Ner #.: 1	AANUFACIUR Jrain prac ut during		
1274 1 the Quality 1 production 1 the Logical to 1 the 1 the	.23	.2296	.24 .2750 .1319	CE1	04-3.1.	96846 MOS;	864 - 25	723/21 6:31; RED IN THE US CASE TICO.		
						R				

l

STANDARD "I" BEAM A 992 3 X 5.7# X 20'	PO/REL WLY-22-2730/ HEAT: 2118669	BL WLY-570445-6 9/9/2022 Order WLY-102557-6 Page:2
<pre>impact ====================================</pre>	CSA : C40.21_44V/C40.21_504/ 3 Heat(5) for this MIR.	UCDR SIEL - BERKILEY 455 Hagen Avenue 455 Hagen Avenue uger, SC 29450 honei (843) 336-6000 honei (843) 336-6000 HOUSICK SIEL DISIRIBUTORS 90 BOX 21119 HOUSICK, IX 77226 PECIFICATIONS: Tested in accordance with PSIP ASME : SA-16 13 PSET 1620-1115-036 10-0510 10 50/0510 50
<pre>h. 'No Weld Repair' was peformed, 'All mechanical resting is performed by the quality .29CuNNi)-(9.10NiNp)-33.39(CuNcu) testing lab, which is independent of the production departments:</pre>		CERTIFIED MILL IEST REPORI 100% EAF MELTED AND MANUFACTURED IN THE USA and hot colled to a fully Mucor-Backeley are cast and hot colled to a fully Mucor-Backeley are cast. 11/23/21 6:31:40 Structural sections produced by Mucor-Backeley are cast. and hot colled to a fully Miled and file grain practice. Mercury not intentionally added at any point during manufacturing. Ship To: INTSEL STEEL DIST Customer H: 1864 - 25 ZIS 06728 Customer H: HOUSIDN, IN 77041 TM Specification R6/R6M-19 and R370. Tested in accordance with EN10204-2004-3.1.

14-22-2022 06:02 Load - 4062865 Brazos Industries LLC Cust. PO -	BL - 3916345 Heat - SM1278 Order - 21304494	blr466
TUBULAR PRODUCTS	6226 W. 74TH STREET https://www.nucortubular.com CHICAGO, IL 60638 https://www.nupportal.com Tel: 708-563-1950 Certificate Number: DCR 752830	
Sold By: NUCOR TUBULAR PRODUCTS INC. DECATUR DIVISION 2000 INDEPENDENCE AVENUE N.W. DECATUR, AL 35601 Tel: 256 340-7420 Fax: 256 340-7415	Purchase Order No: 7722972 Sales Order No: DCR 145113 - 16 Bill of Lading No: DCR 105846 - 5 Invoice No: Invoiced:	
Sold To: 1187 - KLOECKNER METALS - BUDA/HOUS 500 COLONIAL PARKWAY SUITE 500 ROSWELL, GA 30076	Ship To: STON 1 - KLOECKNER METALS CORP HOUSTON 14200 ALMEDA ROAD 713-433-7211 HOUSTON, TX 77053	
CERTIFICATE of ANALYSIS and Customer Part No: TUBING A500 GRADE B(C) 5" SQ X 1/4" X 48'	Certificate No: DCR 752830 Test Date: 3/14/2022 Total Pieces Total Weight Lbs 16 11,996	
Bundle Tag Mill Heat Specs 622415 40N NM0839 YLD=6800 622452 40N SM1278 YLD=6410 Mill #: 40N Heat #: NM0939 Carbon Eq: 0.2	Y/T Ratio Pieces Weight Lbs 00/TEN=77200/ELG=26 0.8808 12 8,997 00/TEN=77000/ELG=30 0.8325 4 2,999	
C Mn P S Si 0.0600 0.9700 0.0080 0.0020 0.194 B Ti Ca	Al Cu Cr Mo V Ni Nb N 0 0.0180 0.1000 0.0600 0.0200 0.0050 0.0300 0.0240 0.0073	
Output Output<	AI Cu Cr Mo V Ni Nb N	
B Ti Ca 0.0003 0.0010 0.0019 T/R FAX	0 0.0270 0.1400 0.0600 0.0200 0.0020 0.0500 0.0070 0.0074	
Certification: I certify that the above results are a true and co PRODUCTS INC. Sworn this day, 3/14/2022. THE SPECIFICATIONS LISTED BELOW BEP	prrect copy of records prepared and maintained by NUCOR TUBULAR	
CURRENT ISSUED DATES OF THESE STAN DOES NOT INDICATE THAT THE MATERIAL TO EACH OR ALL OF THE STANDARDS. WE MATERIAL ABOVE TO THE SPECIFICATION LINE DESCRIPTION.	ABOVE CONFORMS CERTIFY THE LISTED IN THE Are heaving	
CURRENT STANDARDS: A252-19 A500/A500/A-21 A513/A513M-20 ASTM A53/A53M-20 ASME SA-53/SA-53M-20 A847/A847M-14 A1085/A1085M-15 IN COMPLIANCE WITH EN 10204 SECTION 4	Nora Oukajji Metallurgist/Quality Supervisor	
INSPECTION CERTIFICATE TYPE 3.1	Page - 1	

	Bend Test 1 Passed	Tensile to Yield ratio test1 1.61	Elongation Gage Lgth test 1 8IN	Elongation test 1 15%	Tensile Strength test 1 108.6ks	Yield Strength test 1 67.6ksi		AI 0.002%	Sn 0.010%	Cb 0.000%	V 0.000%	Mo 0.054%	Ni 0.15%	Cr 0.09%	Cu 0.39%	Si 0.17%	S 0.049%	P 0.013%	Mn 0.80%	C 0.46%	Characteristic Value	Sert. No.: 83714603 / 111040A619	VIELI DATE: 12/04/2021	MELT DATE: 12/01/2021	ROLL DATE: 19/11/20091	GRADE: ASTM A615-20 Gr 420/60	SECTION: REBAR 19MM (#6) 20'0" 420/60	HEAT NO -3111040	(und	SEGUIN TX 7815
					<u>.</u>				0	0	0	0					0.	0.				- O		C		- (0 0	0		5-7510
																				Bend Test Dia	Characteristic	79 774 5900	5 //845-/950	onege station IX	Subsection TV	DRED State Hun 20	INC COnstruction SVCS College Stati	MC Construction Suce College Stati		830-372-8
																				imeter	Value	F O		7	, -	- =	E U	0	~	1771
to www.P6	or other re	known to	*Warning:	*Meets the	of the pla	*Manufactu	*Contains	*Contains	*EN10204:	*100% me	*Material ii	The Followi								3.750IN	C	979 774 5900	US //845-/950	College Station 1 X		100ED State Hans 30	CIVIC Construction SVcs College Sta		O uality /	
55Warnings.ca.gov	eproductive harm. For more information go) the State of California to cause cancer, birth defe	This product can expose you to chemicals which.	e "Buy America" requirements of 23 CFR635.410,	ant quality manual	ured in accordance with the latest version	no Mercury contamination	no weld repair	:2004 3.1 compliant	elted and rolled in the USA	is fully killed	ing is true of the material represented by this MTR:									haracteristic Value	DLVRY PCS / HEAT: 1008 EA	DLVRY LBS / HEAT: 30282.000	CUSI P/N:	CUSI PU#: 905997	DUL#: /4003/10	ati Delivery#: 83714603		Rolando A Davila	The state of the s

Page 1 OF 1 01/12/2022 00:57:51

HEAT NO.:3111523 GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: 172/6/2021 S CMC Construction Svcs College Stati L S CMC Construction Svcs College Stati H S CMC Construction Svcs College Stati H H MELT DATE: 12/21/2021 T 10650 State Hwy 30 T 10650 State Hwy 30 T 10650 State Hwy 30 F 10650 State Hwy 30 F 2000 F 2000 F 2000 979 774 5900 F 1070 % F F 1000 % F 1000 % F 1070 % F F 100000 % F 1000 % F 1000 % <td< th=""><th>known to the State of California to or other reproductive harm. For mo</th><th></th><th></th><th>anv 1.59 Passed</th><th>Tensile to Yield ratio test 1 Tensile to Yield ratio test1 Bend Test 1</th></td<>	known to the State of California to or other reproductive harm. For mo			anv 1.59 Passed	Tensile to Yield ratio test 1 Tensile to Yield ratio test1 Bend Test 1
HEAT NO.:3111523 GRADE: ASTM AG55.20 Gr 420/60 GRADE: 12/26/2021 S CMC Construction Svcs College Stati P S College Station TX P College Station TX	of the plant quality manual Meets the "Buy America" requirer Warning This product can expose			107.1ksi 16%	Tensile Strength test 1 Elongation test 1
HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20:0" 420/60 ROLL DATE: 12/26/2021 MELT DATE: 12/26/2021 Cert. No.: 83702613 / 111523A371 S I 0 CMC Construction Svcs College Stati P S College Station TX US 77845-7950 P S College Station TX US 77845-7950 P CMC Construction Svcs College Station TX P H 10650 State Hwy 30 P H College Station TX US 77845-7950 P H 10650 State Hwy 30 P College Station TX US 77845-7950 P P College Station TX US 77845-7950 P C	Contains no Mercury contaminatic Manufactured in accordance with			67.5ksi	Yield Strength test 1
HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20'0" 420/60 GRADE: ASTM A615-20 Gr 420/60 RoLL DATE: 12/21/2021 MELT DATE: 12/21/2021 Cert. No.: 83702613 / 111523A371 CMC Construction Svcs College Station D College Station TX S D D D D D D D D D D D D D D D D D D D	EN10204:2004 3.1 compliant Contains no weld repair			0.016% 0.001%	Sn
HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20'0" 420/60 S O GRADE: ASTM A615-20 Gr 420/60 S College Station TX S College Station TX CMC Construction Svcs College Stati H H H H College Station TX H H H College Station TX H H H H College Station TX H H S S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Material is fully killed 100% melted and rolled in the US			0.000%	СЬ
HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20'0" 420/60 GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: 12/26/2021 MELT DATE: 12/21/2021 Cert. No.: 83702613 / 111523A371 S CMC Construction Svcs College Stati 1 S CMC Construction Svcs College Stati 1 H MELT DATE: 12/21/2021 Cert. No.: 83702613 / 111523A371 T D College Station TX US 77845-7950 P College Station TX US 77845-79	he Following is true of the material			0.062%	Mo
HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20'0" 420/60 GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: 12/26/2021 MELT DATE: 12/21/2021 Cert. No.: 83702613 / 111523A371 S CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX US 77845-7950 T H H H H H H H H H D College Station Svcs College Station Svcs College Station TX H H H H D D D College Station TX H D D D College Station TX P				0.10%	
HEAT NO.:3111523 S CMC Construction Svcs College Stati S CMC Construction Svcs College Stati S CMC Construction Svcs College Stati H SECTION: REBAR 16MM (#5) 20'0" 420/60 L 10650 State Hwy 30 L 10737845-7950 L S 77845-7950 S 7794 5900 S 7794 5900 S 7794 5900 S 799 774 5900 S 799				0.17%	<u>;</u> <u>v</u>
HEAT NO.:3111523 S CMC Construction Svcs College Stati H GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: 12/26/2021 L 10650 State Hwy 30 L 107 7845-7950 L Value S 77845-7950 L Value S 77845-7950 US 77845-7950 US 77845-7950 0 979 774 5900 0 979 774 5900 0 979 774 5900 US 77845-7950				0.011%	م ح
HEAT NO.:3111523 S CMC Construction Svcs College Stati S CMC Construction Svcs College Stati SECTION: REBAR 16MM (#5) 20'0" 420/60 0 1 10650 State Hwy 30 H H GRADE: ASTM A615-20 Gr 420/60 L 10650 State Hwy 30 I S College Station TX P College Station TX VS 77845-7950 US 77845-7950 T 979 774 5900 T 979 774 5900 T 979 774 5900 T 979 774 5900 Characteristic Value Ch <		er 2.188IN	Bend Test Diamete	0.44%	Min C
HEAT NO.:3111523 S CMC Construction Svcs College Stati S CMC Construction Svcs College Stati SECTION: REBAR 16MM (#5) 20'0" 420/60 0 0 H H GRADE: ASTM A615-20 Gr 420/60 L 10650 State Hwy 30 H H ROLL DATE: 12/26/2021 D College Station TX P College Station TX MELT DATE: 12/21/2021 T VS 77845-7950 T VS 77845-7950 Cert. No.: 83702613 / 111523A371 T 979 774 5900 T 979 774 5900 0 O VS 77845-7950 T 979 774 5900 0 0	Characteristic Val	ue	Characteristic Val	Value	Characteristic
	lege Stati Delivery#: BOL#: 74E CUST PO# DLVRY LB DLVRY PC	CMC Construction Svcs Cc 1 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	Construction Svcs College Stati	420/60 S CMC 420/60 L 1065 D Colleg US 77 1 T 979 7	HEAT NO.:3111523 SECTION: REBAR 16MM (#5) 20'0" GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: 12/26/2021 MELT DATE: 12/21/2021 Cert. No.: 83702613 / 111523A37
	احم	Call Call	830-372-8771	X 78155-7510	SEGUIN T

Page 1 OF 1 12/29/2021 23:15:42

mings.ca.gov	to www.P65Wa					
uctive nami, For more information go	or other reprod				00000	
the second to be a second to the second s					aread	Rond Test 1 E
State of California to cause cancer hirth	known to the				.53	Tensile to Yield ratio test1
product can expose you to chemicals w	*Warning: This				IN	Elongation Gage Lgth test 1 8
y America" requirements of 23 CFR635.	*Meets the "Bu				4%	Elongation test 1
rality manual	of the plant qu				09.8ksi	Tensile Strength test 1
in accordance with the latest version	*Manufactured (1.8ksi	Yield Strength test 7
tercury contamination	*Contains no M					
eld repair	*Contains no w				.002%	Al
4 3.1 compliant	*EN10204:200-				1.017%	Sn
and rolled in the USA	* 100% melted				0.001%	CD
'y killed	*Material is full				0.000%	2
: true of the material represented by this	The Following is				0000%	INIO
					0.14%	Z
					0.13%	Cr
					0.30%	Cu
					0.21%	Si
					0.043%	S
					0.010%	q
					0.86%	Mn
	1.750IN	leter	Bend Test Diam		0.45%	C
acteristic Value	Chara	Value	Characteristic V		Value	Characteristic
DLVRY PCS / HEAT: 820 E	79 774 5900	6 10	4 5900	979 77	F O	Cert. No.: 83714604 / 1111173A13
DI VRY I RS / HEAT: 10055	S 77845-7950	U	45-7950	US 778		MELT DATE: 12/08/2021
CUST PO#: 905998	0650 State Hwy 30	- 1	Station TX	College		ROLL DATE: 12/19/2021
BOL#: 74563716		I		2000	420/60 0	GRADE: ASTM A615.20 Cr 420/60
Delivery#: 83714604	MC Construction Svcs College Stati	s	onstruction Svcs College Stati	CMC C	s	SECTION DEDAD 12000 (44) 2000
Rolando A Davila urance Manager	Quality Assu				_	
ID and	CONVU .	71	830-372-87	10	K 78155-75	CMC SEGUIN T
mount to the reported grade spec	2	pies call	For additional cor		ILL DRIVE	「日本語語語」 「日本語語語語」 「日本語語語語』

Page 1 OF 1 01/12/2022 00:59:20

909 - 265 - 2458	Chad Foltz
Tene Arari a TMD Donertintion su	
H	
I 10650 State Hwy 30	CUICH SOFF. BULCONDO
P College Station my	
115 779845-7455	
T 379 774 4984	
ò	
acterístic Value	Chatacceristic Value
Ge Lgill 1 (metri 200mm	
Send Test 1 Passed	
Fion Avg. Space 0,3271N	
mation Max. Gap 0.122IN	
	The Following is rue of the ensterial represented by this MTR:
	"Material is fully killed and is Hoy Rolled Steel
	TO A STRATE, CONST. AND INDUDUCIDADE IN THE USA
	"Contains no welf repair"
	"Cuntans in Merzury contamination
	"Adanutactured in accordance with the latest verson
	of the plant quality manual
	"Ments the "Suy America" requirements of 23 CFR635.410, 49 CFR 6
	Warbary This product can expose you to chemicals which are
	Annum to the State of California to cause cancer, birth defects
	as other reprotactive hann. For more information go
1 · · · · · · · · · · · · · · · · · · ·	ege Stati S CMC Construction Sw H 1.65: State Hny 3: P College Station TX US 77845-755: C 979 T74 496;0 Send Test 1 Passed Son Avg. Spaci 0.1271W ion Avg. Heigh 0.0301W ation Max. Gop 0.1271W

Page 1 of 1 12/02/2012 14:23:22

1

gruuncuve narm. For more information go Sviarangs ca ppv	296-MMM at					
arcoductive barns for more information of the second	st sther no				1.62	Tensile to Vield ratio testi
the Sone of California to one and the state of the					NIC	Elongarion Gage Lyth test 1
This printing was expand that in changed a first	Wanney 7				14%	Elongation test 1
"But America" remains of 22 CEORDE (1) - 4 PED 54	"Meets the				753MPa	Tensile Strength 1 (metric)
and guadity shared	sta atthe sta				109.2ksi	Tensile Strength test 1
d in annudance with the latest success	"Manufaouvre				463MPa	Vield Strength Test 1 (metri
e Moreury coatemination	Canans no				67.2ksi	Yield Strength test 1
ia wold repair	•Contains no					
CC4 3 f compliant	5×10204 20				0.013%	Sn
hed, roked, and manufactured in the USA	-196%, met				0.002%	43
· July hilled and is Hat Rolled Stoel	*Material is				0.004%	~
ig is true of the material represented by this RATE:	The Following				0.022%	мо
					0.078	NT
					0.12%	Cr
					0.25%	2
		0.130IN	Rebar Deformation Max. Cap		0.18%	ذك
		0,037IN	Robar Deformation Avg. Heigh		0.0378	دە د
		0.38113	Rebar Defoundtion Avg. Spaci		0.011%	ę
		1020000C	Bend Test 1		1.04%	Ma
	•	200m	Elongation Gage Lgth 1 (metry		0.463	Û
Characteristic Value		Value	Characteristic		Value	Characteristic
TANAL CAR / NEWL / 98 EX			o	0		
		979 774 5900	74 5900 T	7 979 7		
DIWRY LES / HEAT: 15/24 DOD LA	12	US 77845-796	0667 5487			
CUST P/N:	on TX	COLLege Stati		10		LT DATE: 11/09/2022
CUST 20#: 935381	or Am	Total State	as Station TV			DLL DATE: 11/09/2022
BCL#: 75100412		10680 01474	Scate Hwy 32	L 10650		ADE: ASTM A615 20 Gr 420/60
ati Delivery#: 85247415	The officer of the second second			0	20/60	SCTION: REBAR 16MM (#5) 20'0" 4
	tion over outloo - Ar	CMC COnstruct	onstruction Svos College Stat. 5	s chic c		2AT NO. : 5023781
Chad Foltz Quality Assurance Manager						
-det a D						
CI I. I		*100				CMC
0 2		LASS CALL		234-4100	wille FL 32	Jäckson
nd conform to the reported grade specificati	the Constant and				lebar Road	16770 F

Page 1 OF 1 12/02/2022 21:45:53

.

	CMC STEEL TEXAS		CERTIFIED MILL TEST	We here! REPORT are accurate an	by certify that the test results presented here Id conform to the reported grade specification
CMC	SEGUIN TX 78155-7	510	For Additional copie 800-227-6489	a ca	Rolando A Davila
				Quality	r Assurance Manager
HEAT NO.:3119337 SECTION: REBAR 19MM	(#6) 20'0" 420/60		struction Svcs College Stati	S CMC Construction Svcs College St	tati Delivery#: 85233725
GRADE: ASTM A615-20	Gr 420/60	L 10650 S	ate Hwy 30	1 10650 State Hwy 30	BOL#: 75082383 CUST PO#: 934479
MELT DATE: 11/01/202		US 7784	tation TX	P College Station TX	CUST P/N:
Cert. No.: 85233725 / 1	19337A619	F 979 774	5900	105 //845-/950 1 979 774 5900	DLVRY LBS / HEAT: 17304.000 LB
		0		0	
Chara	cteristic Value		Characteristic Va	lue c	Characteristic Value
	C 0.50%		Bend Test Diamet	er 3.750/N	
	Mn 0.92%				
	5 0 044%				
	Sí 0.24%				
	Cu 0.34%				
	Cr 0.08%			A-11.1	
	Ni 0.13%				
	Mo 0.046%			The Follow	ring is true of the material represented by this MTR:
	V 0,000%			*Material .	is fully killed and is Hot Rolled Steel
	Cb 0.007%			*100% m	elted, ralled, and manufactured in the USA
	20 0.000 10			*EN10204	1:2004 3. f compliant
****				Contains	no weld repair
Vield Strengt	h toost 1 73 51			"Contains	No Mercury contamination
Tensile Strengt	hiert 1 110 Obal			"Manufact	tured in accordance with the latest version
	1 103(1 1 10.3N)			of the pic	ant quality manual
	niest i 10%			*Meets the	e "Bity America" requirements of 22 CFR535,410, 49 CFR 661
Electron Lage Lag	Test T din			"Winning:	This product can expass you to chemicale which yes
then pred to a series i	10 test1 1.62			a) umbes	a the Starn of California in waven cancer, bitth Antoess
Deba	LIEST I Passed			1. Jelity JU	noradivetion ham Farman infamation In
	and and a day is a surround processing of the state of the			to www PE	55Warnings.ca.gov
REMARKS :					

Page 1 OF 1 11/18/2022 15:24:46

PLATE A36 TEMPER LEVELED 1/4 X 60.0000" X 96.0000"	PO/REL HOU-22-2714/ HEAT: 221583	BL HOU-934005-1 8/19/2022 Order HOU-30071-1 Page 1
Plate	IEAT :21583 21583 21583 EAT 21583 21583 Fine Gr Country	USTOMER DORESS 121583
A 36 Ton	COIL NO. 5441042 5441045 SLAB 7040 SLAB 7040 SLAB 7040 of origin: Steel	HOT ROLLED STI N2 0.0056
LO# 37995 1/4 × 60 HR Hea# 221583	SLAB 7030 7040 COIL NO. 5441045 COIL NO. 5441045 Heat melted and c	S DE MEXICO DEL IN COILS.
1 4 t.o.	TEST THICKNESS(Inch) X 0.4925 (0.2400 SH SH 19.900 DELIVERY 1003092378 	MILL TEST CERT PROLONGACION JUA Mn P CHEM
a h	OF THE PRODUCT C.STRENGTH T. 16.240 (KSI) 66 77.260 (KSI) 78 IPPED PRODUCT TIPED PRODUCT 11PED PRODUCT 0.2400 CUSTOMER ORD PO2099/MAY22 END OF DATA	IFICATE AHMSA: REZ SIN NUMERO COLO ICAL COMPOSITION S SI CU
ISSUED :	STRENGTH & EL .403(KSI) 45(.832(KSI) 37(WIDTH(Inch) ORD 60.0000 000 A	QUALITY WITH THE NAALA LOMA MONCLO ante of issued 31.05.2022 Guarantee Cr. Ní
S100944	000. (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	PAGE PAGE PAGE 1 0.004 0.004
	T.ELONG. 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H OF STEEL BS
	0.210.44	ALL COMPANY OF THE COMPANY.

Authorized by The results report CE calculated up	Heat MI 21076142 Bit Material Note: Sales Or. Note	M500375810	Bundle No	21076142	Heat No	Sales Order:	Sales Or. Note	21104832 BI	Heat MI	M500381107	21104832	Heat No	Sales Order:	Material:	Sold To Service Ste PO Box 960 HOUSTON USA	Atlas Tube 5039N Coi Blytheville 72315 Tel: Fax:
Cuality Assisted on this no sing the AWS	GRIVER		PC	0.210	C	1689585		GRIVER		6 0d	0.220	c	1683915	6.0x6.0x1	el Warehous)7 TX 77213	Arkansas unty Road 10 Arkansas US
Jurance: June port represent th D1.1 method. This D1.1 method. This D1.1 method. This D1.1 method. This	<u>Mill Location</u> Osceola,AR	054608 Ps	S Yield	0.770 0.009	Mo	0,00,00,01X1)		Osceola,AR	Mill Location	059205 P	0.760 0.009	Mn p		38x32'0"0(3x3).	e Co. L.P.	115 VA
Reckered e actual attribute : document is in		075792	Tensile	0.001	<i>in</i>	ŭ				si 078372	0.002	s				
s of the mate compliance	Method EAF	Psi 38 %	Eln.2			Ma		EAF	Method	Psi 33%	0.030 0	IS IS	Pu	M		
vith the require	Recycled Cont 76.00%		.033 0.100	Cu Cu		terial No:		76.00%	Recycled Con	2in	0.025 0.040	e Cu	rchase Orde	aterial No:	MATERIA	ADIVISION
ind indicate full ments of EN 10	ant Post Co 95.00%		0.001	G	: SSW1210	12004037		95.00%	Itent Post C		0.002	ß	r: SSW1210	60060188	L TEST REF	N OF ZEKELM
compliance 204 type 3.1	nsumer	ASTM	0.018	Mo	29) UI		onsumer	ASTM	Certit	0.009	Mo	029	w	PORT	an indus
with all ap	Pre-Consu 5.00 %	1500-24 CD	0.050	N				5.00 %	A500-21 G	lication	0.020	N				STRIES
plicable sp Metals	mer (Post j	ADE DOO	0.050	ç				umer (Post	RADE B&C	0.010	0.020	ç				
Servic	ndustriai)		0.004	V		Made ir Melted		industrial)		0.000	0 003	<	Melted	Made		
e Center	<u>% Harvested</u> 75%	CE:	0.001 0	TI		1: and Poure	1970	% Harveste		0.001 CE		3	and Poure	n	Shipped] Service St 8415 Clint HOUSTON USA	REF.B/L: Date: Custome
Bang tirement	Within 500	0.37	0.0001 0			d in:	500	vertini		0.0001		1	ed in:		[<u>e</u> eel Wareh on Drive √ TX 7702	81040 08/20/ r: 1746
50 S	Niles of Lo		.0086 0	~	Non	USA		n Miles of L		0.0094	N		USA	110 /	ouse Co., [9	2210 2021
	6		00	2°				00		0.0	Co				1	

Authorized by The results repo	Material Note Sales Or. Note	Bundle No M400189027	02285C	Heat No	Material:	21089292 B Material Note Sales Or. Not	0003484736	Bundle No	21089292	Heat No	Material: Sales Order	Service Ste PO Box 96 HOUSTON USA	Atlas Tub 5039N Cc Blytheville 72315 Tel: Fax:
Auality Assorted on this to sing the Aws	œ · ·	P	0.210	16/1861 C	3.0x2.0x2	IGRIVER): le:	1	0	0.200	C	14.0X14.(eel Warehou 07 1 TX 77213	e Arkansas ounty Road 1 9 Arkansas U
MERICA		Co So	0.840	M	50x40'0"	Oso	Mill	Cs	0.740	Mn)x625x32	se Co. L	015 SA
Among the action of the second the second the second the second s		Yield)61464 Psi	0.010	U	0(6x3).	eola,AR	051796 Psi	Yield	0.011	q	2'0"0(1×1)R	ď.	
Ceckand itual attribute current is in	10100	Tensil	0.008	n			07770;	Tensi	0.002	'n	EC		
compliar	15		0.011	2		EAF	3 Psi	le	0.030	<u>e</u>			898
naterial furmi ice with the r Pag	2	In.2in	AU 0.046	Purchase (Material N	20 <u>Kecycie</u> 76.00%	3%	In.2in	0 000	Purchase	Material N	MAT	
shed and equiremen			0.030	Order:		d Conten		0.000		Order:	<u>o</u>	ERIAL	TISION O
indicate fu		0.001	Cb	SSW119	3002025	95.00		0.001	G	SSW11	140140	TEST R	F ZEKEL
ll compliane 0204 type 3	ASTA	Cert	Mo)562	04000	<u>Consumer</u> %	AST	0.011	Mo	8116	625	PORT	Tub
	A500-21	flcation	N			Pre-Co 5.00 %	M A500-21	0.040	Ni				
applicable s	GRADE B&C	0.060	Cr			nsumer (Pos	GRADE B&	0.050	ç				
S Servic		0.000	۷	Meited	Made	t <u>Industrial</u>)	0	0.002	<	Matte	Made		
and contra		0.001	Ħ	and Pou	2	<u>% Harv</u> 75%		0.001	TI	u ang Po	in:	Shippe Service 8415 C HOUS	REF.E Date: Custo
act require	0 m 0.01	0.0000	80	ared in:		ested	CE: 0.35	0.0002	W	ured in:		B Steel W Ninton Dri TON TX	ML: 8 0.0
ft IIfe		0.0050	Z	USA	USA	<u>Nithin Miles (</u> 500		0.0071	Z	US	SN	arehouse Co ve 77029	1040210 8/20/2021 746
		0.0000	Ca			of Location		0.0031	Ca	A	A	у., L.P.	
49 FU#:3 FO#:55-5234	I 671A :#OS	0	355 3' F	AM- 160	1: B 12 이 문 문 1	2022 Tag 28* Tag	870 7817	 6_:6	976(2 :#] Jeel	- L esnot	e, Steel Waret 01832* Qly:	ылас :rigm: Servic Ран: Тобоос

Contract of the instantial furnitation and indicate full compliance with all applicable specification and contract requirements	Authorized by Quality Assurance: June 6 The results reported on this report represent the act CE calculated using the AWS Dr.1 method. This doc Stock Tube Instituted of the AWS AND	Heat MILL Mill Location 21076222 BIGRIVER Osceola,AR Material Note: Sales Or. Note:	Bundle No PCs Yield M400189027 3 044512 Dei	21076222 0.210 0.860 0.011	Material: 3.0x2.0x250x40'0"0(6x3). Sales Order: 1671861	21074851 BIGRIVER Osceola,AR Material Note: Sales Or. Note:	Bundle No PCs Yield M400189027 8 070547 Psi Heat MILL Mill Location	21074851 0.210 0.820 0.040	Sales Order: 1671861	Sold To Service Steel Warehouse Co. L.P. PO Box 9607 HOUSTON TX 77213 USA Material: 3.0x2.0x250x40'0"0(6x3).	Attas Tube Arkansas 5039N County Road 1015 Blytheville Arkansas USA 72315 Tel: Fax:
Base Tuble REF.B/L: Babe: Brace Babe: Brace Babe	ual attributes of the material furnished and ument is in compliance with the requireme	0620/91FSI 27 % <u>Method</u> <u>Recycled Conten</u> EAF 76.00%	Tensile Ein.2in	S SI AI Cu 0.002 0.030 0.029 0.070	Material No: Purchase Order:	EAF 76.00%	0.002 0.040 0.027 0.100 Tensile EIn.2in 081791 Psi 28 %	S SI AI Cu	Purchase Order:	MATERIAL	
REF.B/L: Customer: B104 Customer: B104 Customer: Ni Cr V Ti B 0.040 0.040 0.003 0.001 0.0002 Stop-21 GRADE B&C Made in: Metted and Poured in: Made in: TS% B Ni Cr V Ti B 0.040 0.003 0.001 0.0002 Stop-21 GRADE B&C Made in: Metted and Poured in: B Pre-Consumer (Post Industrial) % Harvested Stop-21 GRADE B&C With Stop 300 % Yee Consumer (Post Industrial) % Harvested Stop 300 % With Stop 300 % Yee Consumer (Post Industrial) % Harvested Stop 300 % Within Stop 300 %	Indicate full compliance ints of EN 10204 type 3.1	ASTM A <u>Post Consumer</u> I 95.00%	0.001 0.015 0 Certific	Cb Mo	300202504000 SSW 119562	11 Post Consumer 95.00%	0.001 0.012 Certifi ASTM	Cb Mo	300202504000 SSW 119562	TEST REPORT	as Tube
REF.B/L: 810.4 Date: 08/20 Customer: 1746 Shipped To Shipped To 8415 Circle Steel Warst 8415 Circle Steel Warst 8415 Circle NTX 7700 USA 0.001 0.0002 CE: 0.38 75% 500 0.001 CE: 0.38 0.001 CE: 0.38 0.001 CE: 0.38 500 CE: 0.38 500 CE: 0.38 500 CE: 0.38 500 CE: 0.38 500 CE: 0.38	with all applicable specification	500-21 GRADE B&C P re-Consumer (Post Industrial) 5.00 %	0.040 0.050 0.004 ation	NI Cr V	Made Meltec	Pre-Consumer (Post Industrial 5.00 %	0.040 0.040 0.003 <u>cation</u> A500-21 GRADE B&C	Ni Cr V	Made Melte		RIES
100136 Co., L.P 29 29 29 29 29 29 29 29 29 29 29 29 29	and contract requirements.	% Harvested Within Miles of Loca 75% 500	0.001 0.0001 0.0070 0.00	TI B N Ca	in: USA d and Poured in: USA	1) <u>% Harvested</u> <u>Within Miles of Loc</u> 75% 500	0.001 0.0002 0.0061 0./ CE: 0.38	TI B N	id and Poured in: USA	Shipped To Service Steel Warehouse Co., L.P 8415 Clinton Drive HOUSTON TX 77029 USA	REF.B/L: 81040210 Date: 08/20/2021 Customer: 1746

Authorized by The results repor CE calculated us	21076242 BIG Material Note:	Heat MIL	M400189018	Bundle No	DINTED AD	oales Order:	Material:	Material Note: Sales Or. Note	Heat Mit	M400189018	Bundle Me	Heat No	Sales Order:	Material:	Service Stee PO Box 960 HOUSTON 1 USA	Atlas Tube 5039N Cou Blytheville / 72315 Tel: Fax:
Duality Assing the AWS	RIVER		° IC	0.220	C	89957.91	3.0x2.0x25	: SRIVER		9 PC	0.210	C	1675568	3.0x2.0x2	7 7 17 17 77213	Arkansas nty Road 10 Arkansas US
urance: poor represent	Osceola	Million	S Yiel	0.840 0	Mn		50x40'0*0(6;	Osceola	Mill Loc	<u>25</u> Yiel 059	0.860	Mn		50x40'0"0(6	e Co. L.P.	A 5
have been haven been h	AR	ation		0.012 0.	s		x3).	ı, AR	ation	512 Psi	0.011 0	P		x3).		
Land Il attributes o ment is in coi		UO LOCI PS	Tensile	.005 0.0	S					Tensile 082079 Ps	0.002 0.0	Si Si				
f the materia mpliance wit	EAF 76	70 %	Eln.2in	30 0.03	N	Purcl	Mate	EAF 70	Method R	Eln.2lr	0.030	Z	Purc	Mate		
al furnished a th the require Page: 4 o	.00%			0.080	Cu	hase Order:	rial No:	5.00%	ecycled Cont	Ľ	29 0.070	Cu	hase Order	rial No:	MATERIA	A DIVISION
nd indicate fi ments of EN	ent Post (95.00%			0.001	ß	SSW11	3002020	95.00	tent Post		0.001	Cb	: SSW11	300202	L TEST RI	DOF ZEKEL
uli complianc 10204 type 3.	<u>Consumer</u> %	ASTN	Certi	0.016	Мо	9562	504000	%	Consumer	Cert	0.015	Mo	9562	504000	EPORT	Tube
	Pre-Consu 5.00 %	A500-21 GF	fication	0.040	Ni			5.00 %	Pre-Cons	ification	0.040	N				STRIES
plicable spe	<u>imer (Post Ir</u>	ADE B&C		0.050	Q				umer (Poet)		0.050	ç				
cification ar	ndustrial)			0.004	<	metter a	Made in		induced in D	0.001	0.004	<	Melted	Made in		
d contract r	<u>∿ Harvested</u> ′5%	We line a		1001		nd Pourec		<u>75%</u> 75%		CE:	0.001	1	and Poure		Shipped T Service Ste 8415 Clinte HOUSTON USA	REF.B/L: Date: Customer
Ren oquireinon oo	Within h	0.00	1 20	N NUC	5	1 in:		d Within 500		0.38		,	d in:		9 9el Warehou on Drive TX 77029	810402 08/20/2 1746
6108 ² "	illes of Loca		0087 0.0	Ga	•	USA	USA	Miles of Loc		1.0070 0.4	0		USA	1100	use Co., L.P	021
	10		023					300		0027	1 200					

Authorized by Q The results reporte CE calculated usin	<u>Bundle No</u> M400188549 Material Note: Sales Or. Note:	SL5150	Heat No	Material: 4 Sales Order: 1	M400189029 Material Note: Sales Or. Note:	Bundle No	NOVOR NO	Sales Order:	Material:	Service Steel PO Box 9607 HOUSTON TX USA	Atlas Tube A 5039N Count Blytheville Ar 72315 Tel: Fax:
uality Assurance d on this report n g the AWS D1.1 m SCILULA NORTH AMERIC	25	0.200 0.820		1.0x2.0x125x40' 1690213	18	0.210 0.840	C Mn	1671861	3.0x2.0x250x40	Warehouse Co. (77213	rkansas yy Road 1015 kansas USA
e: June by present the acceleration of the sector of the s	<u>Yield</u> 073089 Psi	0.006	,	0"0(5x5).	061464 Psi	0.010	P		0"0(6x3).	Р	
Lual attributes c current is in co	<u>Tensile</u> 082130 Ps	0.005 0.0	,		<u>Tensile</u> 081642 Ps	0.008 0.0	s S			r	
f the material fi	Eln.2in 28 %	AI	Purchas	Materia	<u>Eln.2In</u> 28 %	0.046	A	Purcha	Materia	M	
Page: 5 of 7	0.100	Cu	se Order:	No:		0.030	Cu	se Order:	I No:	ATERIAL T	DIVISION OF
ndicate full o ts of EN 102	0.002	Cb.	SSW 12102	400201254		0.007	Cb	SSW1195	30020250	EST REP	E ZEKELM
compliance (04 type 3.1	Certific ASTM A	Mo	29	1000	Certifi ASTM /	0.000	Mo	62	4000	ORT	ube an indust
with all appl	0.040 () <u>ation</u> 500-21 GRA	N			<u>cation</u> 4500-21 GR	0.010	N				RIES
licable spe	0.050	Q			ADE B&C	0.060	Cr				
Cification	0.004	V		Made i Melted		0.000	<	Meltec	Made		
and contr	0.001	E		n: and Poi		0.001	71	and Po	in:	Service 8415 C HOUST USA	REF.B Date: Custo
act requirem	0.0004 CE: 0.37	ω		ured in:	CE: 0.37	0 0000	0	ured in:		ed To Steel Wan Inton Drive INTX 77	/L: 810 08/2 mer: 174
ents.	0.0062	N	NON	USA	0.0050	N N	5	VSN	/SU	ehouse Co. 029	40210 20/2021 6
	0.0023	Ca			0.0000	Ca					
1872-22 #OP 8 #nJ 848827A #OS	4,8, LP 1222	-602 /M->	34 5	ו 1:01 ; 1:01 ;	104835* 9\13\2053	12 12 16:7	heCl :#h		 	901832* Qty: 101832* Qty:	Frem: Servic Part: T06006

$\langle \rangle$	Authorized b The results rep CE calculated	Sales Or. Not	02748C U Material Note	Heat M	Bundle No M400185946	02748C	Heat No	Sales Order:	Materiai:	Material Note Sales Or. Not	Bundle No M400188550	SL5150	Heat No	Sales Order:	Material:	Sold To Service Ste PO Box 960 HOUSTON USA	Atlas Tube 5039N Cou Blytheville 72315 Tel: Fax:	
Stee	y Quality A ported on th using the A	e:	SSTEEL			0.210	c	1682826	6.0x4.0x	6		0.200	c	1690213	4.0x2.0x	el Warehou)7 TX 77213	Arkansas unty Road 1 Arkansas L	
I Tul	lssurance: Is report rej WS D1.1 me		GRA	Mill	9 PCs	0.840	Mn	0,	(250x40'0")		PCs 25	0.820	Mn		125x40'0"	ISE Co. L.F	015 ISA	
e e	foresent the a		NITE CITY,I	Location	Yield 068701 Psi	0.018	P		0(3x3).		Yield 073089 Psi	0.006	P		0(5x5).			
	Richard actual attrib		-		1ens 08362	0.008	s				Tens 08213	0.005	s					
	utes of the in complia		BOF	Metho	20 Psi 3	0.013	Si				30 Psi 2	0.026	S					
P	material fur nce with the		36.90%	d Recycle	<u>In.2in</u> 4 %	0.048	A	Purchase	Material N		<u>In.2in</u> 8 %	0.034	ð	Purchase	Material N	MAT		
age: 6 of	nished and requireme			d Content		0.060	Cu	Order:	lo:			0.130	Cu	Order:	ē	ERIAL TI	ISION OF	
7	indicate ful nts of EN 10		19.80%	Post Co		0.007	ĉ	SSW1210	60040250			0.002	C)	SSW 1210	40020125	EST REP	ZEKELMA	
	l complianc)204 type 3.			onsumer	Certif	0.000	Mo	29	4000		Certif ASTM	0.010	Mo	29	4000	ORT	ube	
ക	e with all a		14.40%	Pre-Const	A500-21 GF	0.020	N				A500-21 GI	0.040	Ni				TRIES	
Metal	pplicable sp			Imer (Post	VADE B&C	0.080	C,				RADE B&C	0.050	C,					
s Servi	oecification			Industrial)		0.000	V	Melted	Made ir			0.004	٧	nanau	Made in			
te Cent	and contra		100%	% Harvest	CE	0.001		and Pour	н I		Q	0.001	T	and Pour		Shipped 1 Service St 8415 Clint HOUSTON USA	REF.B/L: Date: Customei	
	ct requirem		500	ed With	E 0.37	0.0000	03	ed in:			: 0.37	0.0004	00	ini pa		Icel Wareh on Drive V TX 7702	81040 08/20/ r: 1746	
tonica territoria territoria territoria	lerits.			in Wiles of		0.0040	Z	USA	USA			0.0062	2	USA	USA	ouse Co.,	2210 2021	
				location		0.0000	Ca					0.0023	C			P		
1872-25	:#Od €:#U]	649627A	<i>#</i> 09	~~~	55 (* 176	AA 12	602 IAI-)	719 718	:68] :0]	15* 022	0483 1/3/S	 544 9:0	916(; ;#	169) 1	ا esno	1832* Qty: Steel Wareh	eoivie Service 080080T the ^o	

Authorized by Quality Assurance: The results reported on this report represent the arc calculated using the AWS D1.1 method. This do Stock Tube Institute OF NORTH AMERICA	Material Note: Sales Or. Note:	21076402 BIGRIVER Osceola,AR	M500374036 5 056630 Psi	21076402 0.220 0.770 0.017	Heat No C Mn P	Sales Order: 1687379	Material: 14.0x4.0x250x48'0"0(1x5).	Sold To Service Steel Warehouse Co. L.P. PO Box 9807 HOUSTON TX 77213 USA	Atlas Tube Arkansas 5039N County Road 1015 Blytheville Arkansas USA 72315 Tel: Fax:
Lunent is in compliance with the requirement of the material furnish current is a compliance with the requirement is a com		EAF 76.00%	<u>Tensile</u> <u>Eln.2in</u> 075109 Psi 33 %	0.003 0.040 0.031 0.0	S SI AI CI	Purchase Ore	Material No:	MATER	
ed and indicate full compliance wi ulrements of EN 10204 type 3.1		Content Post Consumer Pr 95.00% 5.0	ASTM ASTM	050 0.001 0.011 0.0	u Cb Mo Ni	der: SSW121029	1400402504800	IAL TEST REPORT	ON OF ZEKELMAN INDUSTRI
th all applicable specification and		e-Consumer (Post Industrial) %	lion 0-21 GRADE B&C	130 0.050 0.004 0.0	Cr V TI	Weited and	Made in:	HO US	Constant Con
contract requirements.		Marvested Within Miles of Lo	CE: 0.37	001 0.0002 0.0072 0.	N	d Poured in: USA	USA	<u>Ibped To</u> Nice Steel Warehouse Co., L.P TIS Clinton Drive USTON TX 77029	F.B/L: 81040210 te: 08/20/2021 stomer: 1746
1672-22 #OS 6 #nJ 643657A #OS	To: RIK-MAR, LP Tag: B17091222	ocation * 20	13/20	1.0025	3 ik 918	469 U	H I	۲. 1835* OW:	Part. T060060

VIAN, ISKW 30' SO TIN.		Forza steel certifies that the products described in this document were manufactured in constitution of Forza steel certifies and inspections included in the quality plans of Forza Steel satisfactory results in all tests and inspections included in the quality plans of Forza Steel satisfactory results in all tests and inspections included in the quality plans of Forza Steel satisfactory results in all tests and inspections included in the quality plans of Forza Steel satisfactory for the	Forza Steel certifica que los productos descritos en este documento fueron fabricados en obteniendo resultados satisfactorios en todas sus pruebas e inspecciones incluidas en los pedido en referencia.	Lotes 5000-3-2,5000-2-53,5000-2-52,5000-2-55,5000-2-55A,500	HSS OIF 5000 6x6 0.188 122305 ASTM AF00 0	The de module. Orden Interna de		CUSTOMER (Cliente) PURCHASE	FORZA STEEL Carretera Salinas Victor	Part: T06v0601830* Qty: 1 Heat#: 1223				
DAN		pliance with the requirements of meet the requirements of the orc	Implimiento con los requerimient lanes de calidad de forza steel p	9.15 30.02	Metros Plee	E LENGTH INCHES (Longitud)	SSW121166	RDER (Orden de Compra)	NTERIAL TEST REPORT - QUA CONSTANCIA DE INSPECTION C INSPECTION C (EN 10204 3.1 B-1 FORZA STEEL - PROD FORZA STEEL - PROD K.m. 2 s/n Salinas Victoria, Nuev	95* Tag: B1/0				
		the specification described, obtained in reference.	os de la especificación descrita, ara cumplir con los requerimien	442.09 200.53	Lbe Kg	MASS (Peso Unitario)	5054309	DELIVERY (Remi	INSPECTON INSPECTON CONSTANCY SO10474 3.18) UCTION FACILITY: UCTION FACILITY:	91222				
		aining	2-34,5000-2-51,5	21.93	Peso Lineal kg x metros	MASS PER METER		sión)	۹ +52 (51) 1958-	C#. 11				
		OUALITY ASSUR	2000-2-58,5000-2-60 Certily By	N/A N/A	Prueba Hidrostatica Requerimientos (psl) espectales	HYDROSTATIC TEST SPECIAL	08/09/2021	DATE (Fecha)	Padking List 3780	29049 LN#: 2				
		0 Olivo Hernández	(Autorizó)	18	S No. Piezze	TURE NUMPE	06062021-1	REFERENCE	Cod (Code); F Eititon (Felción): 1 Data of Rev (frecha Rev) ; Page (†idja);	2. :#Od				
NNAGER	ASSURANCE MA	QUALITY /	10.00											
--	---------------------	-------------------------	------------------	------------------	--	--	---------------------------------	------------------------------------	--------------------------------	--------------------------------	------------------------------------	-----------------------------------	---	-------------------------------
lernández	iuardo Olivo H	Ing. Edgar Ed	otaining	n described, ol	e specificatio. r in reference.	irements of the its of the order	e with the requirement	l in compliance Steel to meet t	manufactured ans of Forza (cument were the quality pla	ibed in this do ins included in	and inspectio	tifies that the p sults in all tests	za steel cer isfactory rea
	r Millo	Poh	antos del	1 los requerimik	ra cumplir cor	iorza steel par	ue calluad de l	on ivo pianes					rencia.	dido en refe
	rtify By (Autorizó)	Cer	<u>ه</u>	ficacion descrit	i de la especi	equerimientos	iento con los r	os en cumplin	eron fabricado	documento fu	critos en este a as sus prueba	productos desc ctorios en toda	rtifica que los p sultados satisfa	rza Steel ce teniendo res
35	72.50	60.15	0.001	0.002	0.020	0.010	0.001	00000						
35	72.50	60.15	0.001	0.002	0.020	0.010	0.001	0.005	0.012	0.520	0.015	0.165	5000-3-4	122395
35	72.50	60.15	0.001	0.002	0.020	0.010	0.001	0.005	0.012	0.520	0.015	0.165	5000-3-3	122395
35	72.50	60.15	0.001	0.002	0.020	0.015	0 001	0.005	0.012	0.520	0.015	0.165	5000-3-2	122395
35	72.50	60.15	0.001	0.002	0.020	0.010	0.001	0.005	0.012	0.520	0.015	0.165	5000-2-64	122395
35	72.50	60.15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.165	5000-2-63	122395
35	72.50	60.15	100.0	0.002	0.020	0.015	100.0	0.005	0.012	0.520	0.015	0.165	5000-2-62	122395
35	72.50	60.15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.165	5000-2-61	122395
35	72.50	0U.15	0.001	0.002	0.000	0.015	0.001	0.005	0.012	0.520	0.015	0.165	5000-2-60	122395
35	72.50	OU. ID	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.165	69-2-0005	CRCZZI
35	/2.50	00.10	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.165	2000-2-58	122090
35	12.50	00.10	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.165	5000 0 50	122000
35	12.50	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	Col. U	SUDU-Z-SSA	100005
35	12.50	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.105	5000 3 EEA	100205
33	70 20	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.100	5000-2-55	122205
30	79 50	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.010	0.100	5000-2-02	122395
30	79 50	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.010	0.100	5000-2-50	122395
35	79 50	60.15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.100	5000-2-50	122395
and the second s	11010101	60 15	0.001	0.002	0.020	0.015	0.001	0.005	0.012	0.520	0.015	0.100	5000-2-40	100005
(%) (Elongation	(KSI) (Última	(KSI) (Límite elástico)	Mo	Ni	Cu	Ç	<	s	P	Mn	SI	0 185	5000-2-49	(Colada) 122395
mecanicas)	Tensile Strength							Químico)	(Analisis					Heat
	Test (Prilabas n	Mechanica						Analyses	Chemica					
ge (Hoja): 2/	Pag	958-3780	'el: +52 (51) 19	o C.P. 65500 T	León , Méxic	rictoria, Nuevo	2 s/n Salinas V	Victoria K.m.	etera Salinas	Carr				
the second secon)				
Edition Rev dición) :1 Rev ite of Rev cha Rev) : 20-01	1528 (E	Packing List)) TY:	INSPECCION INSTANCY IO10474 3.1B CTION FACILI	ISPECTION CO J204 3.1 B- ISI TEEL - PRODUC	CON IN (EN 10 FORZA ST						HZ20	
d (Code): FPD-PR	I Co		EM	EMENT SYSTI	ITY MANAG	PORT - QUALI	IAL TEST REP	MATERI						
					91222	B1/0	lag	22395	al#: 12		wiy.	1000		
)#: ? 273	¥:2 PC	729549 Ln#	SO#: A	F	-MAR	To:	022	9/13/2	Date:	ouse	Wareh	Steel \	'ICe	

The or the or the second secon	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SIZE THICKNESS LENGHT HEAT N.OF C SI Mm P S Cr AI N Nb V CRDER NO SERIAL NUMBER Mail 0,27 1,4 0,045 0,045 0 <th>QUALITY GRADE B/C DESCRIPTION OF GOODS PRIME NEWLY PRODUCED COLD FORMED, WELDED, STEEL SQUARE AND RECTANGULAR TUBING. QUALITY DURABILITY No performance determined CHEMICAL ANALYSIS (%) TS CEN / EN 10261</th> <th>OZDEMİR BORU PROFİL SAN VE TICAŞ QUALITY ASSURANCE AND CONTROL DEPARTMENT BÖLÜCEK MAH. 2 NOLU SANAYİ CADDESİ NO: 128</th> <th>OZDEMIR BORU PROFIL SANAYI VE TIÇAF ORHANLAR MAH. YALI ÇAD THE FIRST FAÇILITY 1: BÖLÜÇEK MAH. 2 NOLU THE SECOND FAÇILITY 2: HAMZAFAKIHLI MAH. YASAR TETKER BULV/ KDZ EREGLI - TURKEY</th> <th>rom: Srice Steel Warehouse Date: 9/13/2022 To: F^{.,}{-N art: T06v0601828* Qty: 2 Heat#: <u>2111574*</u> Tag: C0z090</th>	QUALITY GRADE B/C DESCRIPTION OF GOODS PRIME NEWLY PRODUCED COLD FORMED, WELDED, STEEL SQUARE AND RECTANGULAR TUBING. QUALITY DURABILITY No performance determined CHEMICAL ANALYSIS (%) TS CEN / EN 10261	OZDEMİR BORU PROFİL SAN VE TICAŞ QUALITY ASSURANCE AND CONTROL DEPARTMENT BÖLÜCEK MAH. 2 NOLU SANAYİ CADDESİ NO: 128	OZDEMIR BORU PROFIL SANAYI VE TIÇAF ORHANLAR MAH. YALI ÇAD THE FIRST FAÇILITY 1: BÖLÜÇEK MAH. 2 NOLU THE SECOND FAÇILITY 2: HAMZAFAKIHLI MAH. YASAR TETKER BULV/ KDZ EREGLI - TURKEY	rom: Srice Steel Warehouse Date: 9/13/2022 To: F ^{.,} {-N art: T06v0601828* Qty: 2 Heat # : <u>2111574*</u> Tag: C0z090
	0.347 55825 76125 32.00 21 Z1 Z1 Z1 Z1 Z1 Z1 21 Z1 Z1 Z1 Z1 0.339 6435 88665 32.00 32.	IT NI Mod Cu CEV PSI PSI PSI L Formula State PSI L Formula State PSI L Formula State Tempo (*C]: + 20° Tempo (*C]: + 20° 1 2 3 Av 1 2 3 Av 1 2 3 Av	ASTM ASOO GRADE B/C	Date : 23.02.2022 SEBA INTERNATIONAL INC	RET ANONIM SIRKETI . NO: 15 SANAYI CADDESI NO: 128 JRI NO: 2 KDZ EREĞLİ ORGANİZE SANAYİ BÖLGESİ Y	MAR, LP SO#: A729549 Ln#: 1 PO#: 22 731 0922

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
--

the second second second second second second second second second second second second second second second s	8 x 8	8×8	8×8	8 x 8	8 x 8	8 x 8	8×8	8 x 8	8 x 8	8 x 8	8 x 8	8×8	8×8	8 x 8		2 X X X	0X0	0 1 0	0X0	C A C	2020	2020	2020	2000		0X0	ax b	6x6	6x6	6×6	6 x 6	6x6	6 x 6	6×6	6×6	6 x 6	6×6	6x6	6 X 6	6 X 6	6x6	6 x 6				
	0.375	0.313	0.313	0,313	0,313	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0 100	0,100	0,188	0,100	0,500	0,300	0,000	0,000	0,000	0,000	0,3/5	0,3/5	0,375	0,375	0,375	0,375	0,375	0,375	0,313	0.313	0.313	0.313	0.250	0.250	0 250	0.250	0,250	0,250				
00	30	40	32	30	28	48	40	36	34	32	00	30	28	20	40	40	30	87	48	48	40	200	07	28	48	40	36	34	32	30	28	20	40	30	28	24	48	40	40	30	32	30	1	(
CTTTTTT	2111616	2111611	2111611	2111611	2111611	0007111C	2111609	2111610	2111610	2111610	2111610	2111610	2111610	2111610	2TTTPOF	2111606	2111606	2111606	2111592	2111592	2111594	2111596	2111596	2111596	2111586	2111588	2111591	2111591	2111591	2111591	2111591	2111591	211158/	211150	211158	211158/	2111570	2111576	2111570	211150	211158	211158	1		/	
1 1 1 14	7.4	7~1	- Jul	311	74	TATT -	1/1/1	JAC I	3VE	3v6	220	340	Ave	4X4	9x6	1x4	1x9	1x9	2 5x2	2 3x02	+ 1x6	5x4	1x2	2x4	12x4	3 18x4	1 3x4	1 3x4	1 4x4	5x6	1x6	4x9	1 9×4	740	1 1.0	300	1Euc	0X77 6	0X7 7	3.6	546	2 3x9				
1 0,100	0,10/	0,10/	101,0	1010	0,159	0,100	0,104	0,104	0,104	0,104	0,104	0,104	0,104	0,163	0,163	0,163	0,163	0,163	0,168	0,168	0,162	0,158	0,158	0,158	0,162	0,170	0,170	0,170	0,170	0.170	0 170	0,170	0,161	U, TP	0,10	CT'D	0,16,	0,16,	0,16	0,10	0,10	1016				
10,232	0,180	0,186	0,186	0,100	0,228	0,221	0,234	0,234	0,234	0,234	0,234	0,234	0,234	0,236	0,236	0,236	0,236	0,236	0,249	0,249	0,177	0,196	0,196	0,196	0,240	0,199	0,236	0,236	0.236	0.236	0,220	0120	0,203	0,20	0,20	0,228	0,205	0,209	0,209	0,205	0,202	2000				
11,215	1,209	1,209	1,209	507'T	1,083	1,135	1,096	1,096	1,096	1,096	1,096	1,096	1,096	1,106	1,106	1,106	1,106	1,106	1,190	1,190	1,221	1,242	1,242	1,242	1,221	1,226	1,216	1.216	1.216	1 316	1 7/2 0	1,240	1,240	1,240	1,240	1,083	1,106	1,106	1,106	1,106	DUT'T	1 1 1 100				
0,019	0,015	0,015	0,015	0,015	0,009	0,017	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,012	0,012	0,012	0.012	0,012	0,015	0,015	0,015	0,015	0,015	0,015	0,019	0.012	0,011	0.011	0011	110,011	TTO'O	0,016	0,016	0,016	0,016	0,009	0,012	0,012	0,012	0,012	0,012					
0,006	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	600,0	0,009	0,009	0009	0.009	0.004	0.004	0,006	0,003	0,003	0,003	0,007	0.004	0.007	0,007	0,007	10,00/	1000	0,003	0,003	0,003	0,003	0,004	0,008	0,008	0,008	0,008	800,0					
0,044	0,038	0,038	0,038	0,038	0,035	0,034	0,043	0,043	0,043	0,043	0,043	0,043	0,043	0,037	0.037	0.037	100,0	0.037	0.034	0.034	0.033	0.040	0.040	0.040	0.047	0 044	0.035	0,000	0,035	0,035	0,035	0,041	0,041	0,041	0,041	0,035	0,038	0,038	850'0	0,038	0,038					
																	+			+			+	+	+	+		+											-							
-						_		_			-									+						+	+									_	_			-	_					
0.3	0,3	0,3	0.3	0,3	0,3	0.3	0.3	0.3	0,3	0,3	0.3	0.3	0,3	0.3	0,0	0,0	0,3	2,0	0,3	0,0		0,0	c10		0,0	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0.3	0.3	0.3	0.3	0.3	0.3	E U	0.3					
69 635	69 635	69 635	69 635	69 635	40 572	54 693	48 603	48 603	48 603	48 603	48 603	48 603	48 603	47 558	A7 500	4/ 558	4/ 558	100 00	TQ QQ	08 /55				0/ 024	14 594	13 64	73 642	73 642	73 642	73 642	73 642	70 677	70 67	70 67	70 67	40 57	51 52	51 57	51 57	51 53	51 52					
10 82	10 80	10 80	10 80	10 80	75 76	10 20	20 79	20 79	20 79	20 79	70 70	20 79	20 79	37 26	0/ C7	10 27	25 76	35 82	35 82	86 08	00 00			11 56	50 74	35 84	35 84	35 84	35 84	35 84	35 84	15 83	15 83	15 02	15 93	75 76	00 76	75	20 20	100 7C	00 76					
565	765	765	765	765	705	510	460	ARO	460	460	100	460	460	175	571	125	125	212	215	000	3/5	3/5	3/5	202	240	535	535	535	535	535	535	230	230	720	220	705	137	132	135	130	175					
00,00	2000	00 C2	22,00	100 00	32 00 1	20,00	20,00	19,00	00,00	20,00	30 00	20,00	02/00	00/20	52,00	32,00	32,00	36,00	36,00	36,00	30,00	30,00	30,00	32,00	32,00	30,00	30,00	30,00	30,00	30,00	30.00	34.00	34 00	24,00	24,00	22 00 02	24,00	24,00	04,00	54,00	34 00					
-	+	+	+	-	+	-			-	+	-	-	-																	-	-	+	+		+	+		-	+							
		-		+						-	-																		-			+			-											
	T		-						+	-								-															1								hand					
T	T	1	T	T	1	I	T		1		1			1													1		1	1			1				T									

-			4	-					4	_	_					1	C'		1	4								-	X												
4 x 3	4 x 3	6 x 2	-6x2	6x2	6x2	6 x 2	4 x 2	4 x 2	<4x2	4 x 2	4 x 2	4 x 2	4×2	4 x 2	3 x 2	3 x 2	-3×2	2 X X	2×c	2XC	77 X 77	DI X DT	10 × 10	10 x 10	10 x 10	10 x 10	10 × 10	10 × 10	10 × 10	10×10	10 × 10	10 x 10	10 × 10	8×8	8×8	8X8	8×8	8×8	8×8		
0,188	0,188	0,188	0,188	0,188	0,188	0,188	0.250	0,250	0.250	0.250	0.188	0.188	0.188	0.188	0.250	0.250	0.250	0,100	0,188	U, LAN	0,250	0,500	0,375	0,375	0,375	0,375	0.375	0.375	CTC/D	0,313	0,313	0,250	0,250	0,500	0,500	0,375	0,375	0,375	0,375	~	
24	20	48	40	40	24	20	40	24	20	20	40	28	24	00	40	24	22	340	20	20	40	40	40	36	34	32	30	28	40	36	30	48	40	40	20	48	40	34	32	-	
21115	21115	21115	21115	21115	21115	2111	21119	21110	21110	21115	21110	21119	21110	21110	21110	21110	21110	CTTT7	21115	21115	21116	21116	21116	21116	21116	21116	21116	21116	21112	21116	21116	21116	21116	21116	TTT7	21116	21116	21116	21116		
524 6x2	524 1x	561 7x	62 3x	62 1x	62 2x	62 1x	22 Ex	XL 27	222 44	2) 1v	371 54	21 JV	271 20	-71 JA	N01 00	10 34	XT DTC	X7 BUG	08 1x	08 3x	541 8x	532 15	30 23	531 4x	31 3x	31 5x	31 54	11 676	XT 670	29 3x	529 3x	526 19	27 20	18 10	TT FTG	12 20	513 40:	516 3x	516 4x		
20	20	00	12	9	24	24	5	12	24	512	51	24	24	74	100		4	20	ω	35	2	×2	x2	2	2		5 7	24	9	2	4	×2	XA	24	×4	×2	x2	4	4		
0,161	0,161	0.168	0.164	0.164	0 164	0164	0150	0150	0,100	0,170	0,170	0,173	C/1/0	0,102	0,167	101,0	0,16/	0,169	0,169	0,169	0,169	0,162	0,164	0,162	0,162	0 162	201/0	SQT 0	0,168	0,168	0,168	0,164	0151	0163	0,158	0,164	0,158	0,166	0.166		
0,224	0,224	0.217	0.234	0 234	10734	0,224	417/0	0,214	0,214	0,228	022/0	0,228	877'0	502,0	C/225	0,225	0,225	0,007	0,007	0,007	0,229	0,212	0,230	0.240	0.240	0 240	0,240	0,201	0,201	0,201	0,201	0.205	0,111	0,196	0,196	0,209	0,237	0,232	0 737		
1.119	1,119	1010	1100	1 100	1100	1100	1000	1,099	EGOT	1,104	1,104	1,104	1,104	1,120	1,135	1,135	1,135	0,881	0,881	0,881	1,086	1,212	1,195	1 221	1.221	1221	1/2/1	1,208	1,208	1,208	1,208	1.096	1110	1,242	1,242	1,193	1,208	1.215	1 715		
0.014	0.014	0010	0012	0,010	0,013	0,010	010/0	0,010	0,010	0,011	10,011	10,011	0,011	0,013	0,013	0,013	0,013	0,010	0,010	0,010	0,014	0,010	0,019	0010	0 019	0,019	0,019	0,015	0,015	0,015	0,015	0012	0,015	0,015	0,015	0,014	0.017	0.019	10010		
0.004	0.004	0.004		200,00	0,002	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,012	0,012	0,012	0,007	0,005	0,003	0,007	0,00/	0,00/	0,007	0,003	0,003	0,003	0.003	0,005	0,005	0,003	0,003	0,003	0.005	0,006	10000		
					0	0,	0,	0.	0.	0	0	0	0	0,	0,	0,	0,	0	0	0	0	0	0			0	0,	0,	0,	0	0,0		0,	0,	0	0	0		-		
045	033		150	150	150	038	038	038	038	042	042	042	042	038	041	041	041	030	030	030	032	035	850	140	04/	047	047	040	040	040	040	041	033	040	040	037	040	044			
+		T			F	F													_	_	-	+	+								+						-	+	-		
+	+	+	+	+	+	+												_	+	+	+	+	+	+	+	-				+	+	+				+	+	+	-		
	0	0,	0,	0,	0,	0,	0,	0.	0.	0,	0,	0,	0,	0,	0,	0,	0	0	0		0			0	0	0,	0,	0	0	0		0,	0.	0,	0	0,0		0,0	-		
249 0	339 6	348 6	348 6	348 6	348 6	341 5	341 5	341 5	341 5	359 6	359 6	359 6	359 6	358 6	358 5	358 5	358 5	329 6	329 6	200 0	350 50	200 000	300 0	366 6	366 6	366 6	366 6	369 6	369 6	9 695	34/ 6	338 5	368 7	365 6	365 6	263 292	202 0	369 6			
TATA	1335	1770	1770	1770	1770	6840	6840	6840	6840	4235	4235	4235	4235	2568	8870	8870	8870	3133	3133	2122	1000	2800	2495	2495	2495	2495	2495	8730	8730	8730	0030	2656	5980	5105	5105	0305	1755	3510			
81490	81635	80475	80475	80475	80475	77140	77140	77140	77140	83665	83665	83665	83665	83897	78155	78155	78155	74791	74791	74701	CCUTO	CTCC/	77865	77865	77865	77865	77865	83665	83665	20050	80620	79170	00986	83375	83375	20170	83665	83665			
32,0	30,0	34,0	34,0	34,0	34,0	32,0	32,0	32,0	32,0	32,0	32,0	32.0	32.0	28.0	30,0	30.0	30.0	29.0	0,67	20,00	34,0	30,0	32,0	32,0	32,0	32.0	32.0	32,0	0.75	0,75	30,0	28,0	36,0	30,0	20.0	0,75	34,0	34,0			
	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0								0	0	0	0	0			0	0	0				0	0			
				_							-	-	-							-	+	-			-			-	Ŧ	-	-		-	-	-						
					_	-	-		_		-						-			-	-			_		-	_	1	T	T				-	-						
			-					_	1		-		-	-	-	-	-	1	T	1							-	-					-			-					
-		-			1	T	1	1	1	T	Ť	T	1	1	1	Ť	t	T	T	t	t	1	1		-	1	1	t	t	+	1	1	1	+	T	1					

From: Service.Steel Warehouse Date: 9/13/2022 To: RIK-MAR, LP SO#: A729549 Ln#: 1 PO#: 22-2731 Part: T0600601828* Qty: 2 Heat#: 2111574* Tag: C02090922

1

1

12/0 HOT/0 AUC ANAL A	10 x 4 0.250 40 2111620 3Y6 0.164 0.20	10x4 0.250 30 2111620 1X8 0.164 0.20	10 x 4 0.250 30 2111620 1Y1 0.164 0.20	10 x 4 0,250 24 2111620 1X10 0 164 0 16	8 x 4 0,375 40 2111601 1X3 0165 0 73	8 x 4 0,375 40 2111601 4X4 0165 0 75	8 x 4 0,375 24 2111600 1X1 0 167 0 16	8 x 4 0,250 40 2111600 14X6 0.167 0.18	8 x 4 0,250 24 2111600 2X12 0.167 0.18	6 x 4 0,375 24 2111573 1X2 0.168 0.70	A-6 x 4 0,250 40 2111570 6x6 0.169 0.20	6 x 4 0,250 40 2111570 1x2 0.169 0.20	6 x 4 0,250 30 2111571 1x12 0.170 0.70	6 x 4 0,250 24 2111571 2x12 0.170 0.20	6 x 4 0,250 20 2111571 4x12 0.170 0.20	X 6 x 4 0,188 40 2111569 4x9 0.161 0.70	6 x 4 0,188 40 2111569 1x4 0.161 0.20	6 x 4 0,188 30 2111569 2x12 0161 0.20	6 x 4 0,188 28 2111569 1x12 0,161 0.30	6x4 0,188 24 2111569 1x1 0,161 0,20	6 x 4 0 188 34 2111569 2X12 0,161 0,20	0,168 0,182 00 01115 00 245 0,168 0,20	6 x 3 0 313 A0 2111568 6x6 0,168 0,20	6 v 0,230 40 2111567 8x6 0,174 0,11	6 × 2 0,250 24 2111567 2×12 0,174 0,14	6 X 3 0,188 40 2111566 3x12 0,161 0,20	6 x 3 0,188 30 2111566 1x15 0,161 0,20	6 x 3 0,188 28 2111566 1x15 0.161 0.70	6 x 3 0,188 24 2111566 1x18 0.161 0.20	6 x 3 0,188 20 2111566 1x18 0.161 0.20	X 5 X 3 0.250 40 2111551 4X5 0.164 0.2	5 x 3 0 250 24 2111551 2x12 0,164 0,2	5 x 3 0,188 40 2111550 3x12 0,168 0,2	5 x 3 0,188 40 2111550 1x4 0,168 0,2	5 x 3 0,188 24 2111550 2x20 0,168 0.2	5x3 0,188 20 2111550 2x24 0.168 0.2	A 4 x 3 0,250 40 2111529 6x12 0167 0 3	4 x 3 0,250 40 2111529 1x1 0167 0.2	4 x 3 0,250 24 2111579 3x70 0,167 0,2	4 x 3 0,250 20 2111529 3x20 0167 0.2	4x3 0.188 40 2111524 4x12 0.444 10-	(
0,0 300,0 210,0 360,1 cu	1,096 0,012 0,006 0,0	0,0 1,096 0,012 0,006 0,0	U2 1,096 0,012 0,006 0,0		0,0 200,0 500,0 500,7 55	22 1 106 001 / 1,008 0,0														08 1,087 0,013 0,004 0,0	08 1,087 0,013 0,004 0,0	01 1,208 0,015 0,003 0,0	01 1,208 0,015 0,003 0,0	81 1,106 0,014 0,004 0.0	81 1,106 0,014 0,004 0.0	08 1,087 0.013 0.004 0.0			08 1 087 0 013 0 004 0,0	1/ 1,102 0,015 0,004 0,0	17 1,102 0,015 0,004 0,0	17 1,102 0,015 0,004 0,0	17 1,010 0,010 0,004 0.0	17 1.010 0.010 0.004 0.0	17 1 010 0 010 0 004 0,0			1,103 0,013 0,004 0,0	02 1,103 0,013 0,004 0,0	24 1,119 0,014 0,004 0,0			
42 0,347	42 0,347	42 0,347	42 0,347	35 0,371	35 0,371	29 0,360	29 0,360	29 0,360	40 0,373	0,350	0,350	0,362	0,362	0,362	0,344	0,344	0,344	38 0,344	38 0,344	38 0,344	38 0.344	40 0.369	40 0.369		32 0.344	30 0,344	38 0,344	0,344	0,344	142 0,348	42 0,348	42 0 3/9	33 0,336	0,336	0,336	0,353	49 0,353	149 0,353	149 0,353	145 0,349			
60030 80620 30,00	60030 80620 30 nn	60030 80620 30 nn	60030 80620 30.00	61712 82897 36.00	61712 82897 36,00	63800 83230 30,00	63800 83230 30.00	63800 83230 30,00	65105 84535 34,00	59450 83375 30,00	59450 83375 30,00	58725 80185 32,00	58725 80185 32,00	58725 80185 32,00	60755 79170 34,00	60755 79170 34,00	60755 79170 34,00	60755 79170 34.00	60755 79170 34.00	60755 79170 34.00	60755 70170 32,00	68730 22655 22,00	68730 83655 34,00	56260 78155 34,00	60755 79170 34,00	60755 79170 34,00	60755 79170 34,00	60755 79170 34,00	60755 79170 34,00	57130 80185 34.00	57130 80185 34,00	E7130 00105 30,00	61335 81635 30,00	61335 81635 30,00	61335 .81635 30,00	63655 83810 34.00	63655 83810 34.00	63655 83810 34 nn	63655 83810 34 00	56550 80475 30 nn			
																		Construction of the second sec																									

From: Service Steel Warehouse Date: 9/13/2022 To: RIK-MAR, LP SO#: A729549 Ln#: 1 PO#: 22-2731 Part: T0600601828* Qty: 2 Heat#: 2111574* Tag: C02090922

	MANUF	ine tubes used in the production of the above materials were m WE CONFIRM HEREWITH THAT THE DELIVERED MATERIAL COMI	L: Longitudinally (Direction of the test pieces)	21 20 40 2111040 6X2 0,178 0,174	12 x 8 0,250 40 2111638 4X4 0,167 0,202	12 x 8 0,250 40 2111638 1X2 0.167 0.202	12 x 8 0.250 30 2111638 2X4 0.167 0.202	10 x 8 0 250 20 2111637 12X2 0,168 0,249	12 x 6 0,500 40 2111637 1X1 0,168 0,249	12 x 6 0,375 40 2111636 9X2 0,164 0,230	12 x 6 0,375 30 2111636 1X4 0,164 0,230	12 x 6 0 375 30 3114536 2X4 0,164 0,230	12 × 6 0,250 40 2111635 1X2 0,174 0,181	12 x 6 0,250 40 2111635 7X4 0,174 0,181	10 x 6 0,500 40 2111623 8X2 0.168 0.249	10 x 6 0,375 40 2111622 10x4 0,159 0,228	10 x 6 0 750 A0 2111605 6X2 0,168 0,249	2 2 2 0,575 40 2111604 10X4 0,158 0,237	8x6 0,375 40 2111604 1X3 0,158 0,237	X8x6 0,313 40 2111603 1X3 0.161 0.203	8 x 6 0,313 40 2111603 12X4 0 161 0 202	7 x 5 0,188 40 2111597 7x6 0,170 0,170	X10 x 4 0.250 40 2111620 1X1 0.164 0.205 12 x 4 0.375 40 2111624 11x3 0.164 0.205		Ø.	A
	ACTURER : OZDEMIR BORU PROFIL SANAYI VE	telted and poured in Turkiye from Erdemir Iron PLIES WITH TERMS OF THE ORDER		1,228 0,011 0,006 0,035	1,103 0,013 0,004 0,049	1,103 0,013 0,004 0,049	1,103 0,013 0,004 0,049	1,190 0,015 0,004 0.034	1,190 0,015 0.004 0.034	1 105 0,019 0,003 0,038	1,195 0,019 0,003 0,038	1,195 0,019 0,003 0,038	1,106 0,014 0,004 0,032	1.106 0.014 0.004 0.032	1 190 0.015 0.006 0.044	1,083 0,009 0,004 0,035	1,190 0,015 0,004 0,034	1,208 0.017 0.005 0.040	1,208 0.017 0.005 0.000	1 240 0,016 0,003 0,041	1,1/3 0,013 0,008 0,028	1,222 0,015 0,004 0,046	1,096 0,012 0,006 0,042			
ÖZDEMİ SANAYI Odmanta Maş Taktorzy 322 gö Fox: 19372 Maşfou Ku	TICARET ANONIM SIRKETI	and Steel Industry Trade and Co.Inc. Auth	00'755 contre acesta	0.383 64960 83665 32.00	0,353 63655 83810 34,00	0,353 63655 83810 34,00	0.353 63655 82215 36.00	0,366 61335 82215 36,00	0,365 58290 79315 36,00	0,365 58290 79315 36.00	0,365 58290 79315 36,00	0.365 50260 78155 34,00	0,360 56260 78155 34,00	0,366 61335 82215 36,00	0,369 63510 83665 34.00	0.340 57275 76705 37.00	0.366 61326 02346 32,00	0,361 60465 77285 32,00	0,368 67715 83230 34,00	0,368 67715 83230 34.00	0.366 64235 83665 74 00	0.371 59450 78560 37.00	0.347 60030 80650 30.00			
R BORU PROFIL New Control Con		orised Representative Sezal ORHAN																								

	exas A&M ransportation stitute	QF 7.3-01 Sam	Concrete pling	Doc. No. QF 7 .3-01	Revision Date: 2020-0 7- 29
Quality	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th hn	Revision: 7	Page: 1 of 1
Project No:	611801-03	Casting Date:	6/13/2022	Mix Design (psi):	4000
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	Terr	acon
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	Terr	acon
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)
T1	Raymond G. 125	127217		100% of deck	
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average
		-,			

	Redit-max Concette Compa Redit-max Concette Compa REMIT PAYMEN P.O. BOX138 KURTEN, TX 77	ца _{му} NT TO: ⁷⁸⁶² 5222 S Вгу	Sandy Point RD. van, Tx 77807	17534 SH 6 College Station	South TX 77845	BISS Circle Lake Di inehurst, TX 77362	BCS DISPAT PINEHURST DISPAT OFFI	127217 CH - 979-316-2906 CH - 936-232-5815 CE - 979-985-3636
					2818,RT H E "T",RT H AY STRAIGH	WY 21,LT 5: WY 47,LT II TALL THE WA	ILVER HILL NTORELLIS NY DÓWN TO	,RT AT ENTRANCE, THE GATE
1	TIME	FORMULA	LOAD SIZE	YARD ORDERED		DRIVER/TRUCK		PLANT TRANSACTION#
	9:55 B	CSN40500	4.00	4.00 P		ROYMONI) G 125	62704
	DATE		LOAD#	YARDS DEL.	BATCH#	WATER TRIM	SLUMP	TICKET NUMBER
	6/13/22	PROJECT	ing and add to about	6 00		conte la amiaza v		
	OUANITITY	CODE	DESCRIPTION	4.00			LINIT PRICE	EXTENDED PRICE
	4.00 yd 1.00 ea 1.00 ea	I BCSN4050 SOVE ENVIRONM FUEL		MUN, 4 Envir Fuel (200,BLND,5 onmental S Charge	" undry Ch annen Thank või		husiness
	LEFT PLANT	ARRIVED JOB	START UNLOADING	SLUMP	CONCRETE TEMP		a state	DADINES 5
	161D	In 2M	~			AIRTEMP	Prev. AM	r en en en en en en en en en en en en en
	10,10	10,00		ON SITE	TERTING		Ticket Tota	al contract of the
	FINISH UNLOADING	LEFTJOB	ARRIVED AT PLANT	TERI	RACON		and and the date	
		diensaliena ave		TESTING LAB: GES CME	SNER OTHER	A THUR DING	ADDITIONAL CHARC	GE 1
		TE	STED	AIR	CYLINDERS		ADDITIONAL CHARC	GE 2
		YES	NO		N. THE MAN		GRAND TOTAL	
	IRRITATI Contains Portland Comer CONTACT MAY CAUSE Contact with Skin. In Case Water. If Irritation Persists CONORETE is a PERISHA PUROMASER UPON LEAV OTAL CONTROL CONTROL VIENT CONTROL CONTROL VIENT CONTROL VIENT CONTROL VIENT CONTROL VIENT CONTROL AND CONTROL AND CONTROL VIENT CONTROL CONTROL VIENT CONTROL C	WARNING NG TO THE SKIN A HURNS. Avoid Contact V BURNS. Avoid Contact V BURNS. Avoid Contact V Burns Avoid Contact V Burns and Statematic V of Contact with Skin or Ey Get Medical Attention KEI BLE COMMODITY and BECOM Nas the PLANT, ANY OFAAN Insteas to pay all costs, including s owed. Loss of the Cash Discounted will 90 min. will be \$100.00hr.	ND EYES Ind Gloves. PROLONGED With Eyes and Prolonged res, Rinse Thoroughly With BYES THE PROPERTY of the BEEP CHILDREN AWAY. WES THE PROPERTY of the EXECUTION of 0 reasonable attorney's fees. If at the rate of 19% par- ality. No Claim Allowed Unless be Collected on all Returned	PROPERTY DA TO BE SIGNED IF DELVERNT Deer Customer - The driver size and weight of this truck is the premises and/or adjace material in this load where yr and this supplier from any re may nocur (b) the driverse material and that you al most of the driverse of the driver this material and that you al must from the weight of has be undersigned agrees to inde driver of this truck and this au the premises and ico have an significant of the driverse and significant of the driver	MAGE RELEASE TO BE MADE INSIDE CUBB LINE; of this truck, in presenting this may possibly cause damage to int property if the places the cu denire if. It is our wink to cup the second second places and space to the place the space to help him remove hields so that he will not liter the minity and hold harmless the point of RELEASE the all damage be and of all damage to help him remove hields so that he will not liter the minity and hold harmless the point of active which may be sen out of delivery of this order	Excessive Wate H ₂ 0 Ac GAL X. WEIGHMASTER NOTICE: MY SIGNATURE E VARNING NOTICE AND SUP CAUSED WHEN DELIVERING LOAD RECEIVED BY X	r is Detrimental to Concr Ided by Request/Authoria harge for credit c HELOW INDICATES THAT I PUER WILL NOT BE RESPO INSIDE CURB LINE.	ards HAVE READ THE HEALTH NSIBLE FOR ANY DAMAGE
								07047
								127217

 Report Number
 A1171057.0230

 Service Date:
 06/13/22

 Report Date:
 09/15/22

 Task:
 PO# 611801-3

Client

Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Specified Strength: 4,000 psi @ 28 days

Mix ID:	BCSN40500		
Supplier:	Texcrete		
Batch Time:	0955	Plant:	63704
Truck No.:	125	Ticket No.:	61872

Result

Bryan, TX Project Number: A1171057 Sample Information Sample Date: Sampled By:

Water Added Before (gal): 0 Water Added After (gal): 0

Weather Conditions:

Accumulative Yards:

Placement Method:

Sample Location:

Placement Location:

Project

Riverside Campus

Riverside Campus

06/13/22 Sample Time: 1035 Steven Savala Clear

erracon

College Station, TX 77845-5765

979-846-3767 Reg No: F-3272

6198 Imperial Loop

10 Batch Size (cy): 10 Chute

0 Main runway, SW side of runway on the side of the runway Main runway, SW side of runway on the side of the runway

Field Test Data Test

Slump (in):	5 1/2
Air Content (%):	1.5
Concrete Temp. (F):	92
Ambient Temp. (F):	91
Plastic Unit Wt. (pcf):	
Yield (Cu. Yds.):	

Laboratory Test Data

Set No.	Spec ID	Cyl. Cond.	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Max Load (lbs)	Comp Strength (psi)	Frac Type	Tested By
1	А	Good	6.00	28.27		09/14/22	93 F	127,900	4,520	5	SCG
1	В	Good	6.00	28.27		09/14/22	93 F	132,230	4,680	3	SCG
1	С	Good	6.00	28.27		09/14/22	93 F	85,230	3,010	3	SCG
1	D						Hold				
Initial C	ure: Out	tside		Final	Cure: Field (Cured	Sa	ample Descri	iption: 6-inch d	iameter cyl	inders

Comments: Not tested for plastic unit weight. F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Specification

NA

Samples Made By: Terracon

Services:

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Steven Savala Reported To: Bill at TTI Contractor: MBC Management Report Distribution:

(1) Texas Transportation Institute, Bill Griffith

Reviewed By:

Start/Stop: **

lexander Dunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

	exas A&M ansportation stitute	QF 7.3-01 Samj	Concrete pling	Doc. No. QF 7.3- 01	Revision Date: 2020-0 7- 29
Quality	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th hn	Revision: 7	Page: 1 of 1
Project No:	611801-03	Casting Date:	6/29/2022	Mix Design (psi):	4000
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	Terr	acon
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	Terr	acon
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)
T1	ChesterMoori 3	126474		100% Parapet	
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average

REMIT PAYM P.O. BOX138 KURTEN, TX	ENT TO: 77862 5222 Bi A&M TRANSP WE A BRYAN	Sandy Point RD. ryan, Tx 77807	EXCO 17534 SH College Station IN 41 RD	6 South n, TX 77845 2818 RT F TO RELLIS H ST, RT JOB ON RT	18935 Circle Lake D Pinehurst, TX 77362 IWY 21 U TUI LFT AT STOR FLIGHT LN I TTI OFFICI	BCS DISPAT PINEHURST DISPAT Ir. OFF 2 RN JUST PA PSIGN RT A RD, RT FLI 5 BUILDING	126474 CH - 979-316-2906 CH - 936-232-5815 ICE - 979-985-3636 ST 47 RT VE A, RT GHT LINE
TIME	FORMULA	LOAD SIZE	YARD ORDERED				
8:40	BCSN40500	3.00	3.00 P	0#	CHESTER	MODDITZ	PLANT TRANSACTION#
DATE	Part of the	LOAD#	YARDS DEL.	BATCH#	WATER TRIM	SILIMP	TICKET NUMBER
6729722	TTIRELL	3.00	3.00			5.000018	COO07
QUANTITY	CODE	DESCRIPTION			Sector Inclusion	UNIT PRICE	EXTENDED PRICE
1.00 e 1.00 e	ENVIRON A FUEL		Envir Fuel (business
LEFT PLANT	ARRIVED JOB	START UNLOADING	SLUMP	CONCRETE TEMP.	AIR TEMP	Tax	
and	904	a sal Maran	alton decemen		and another trade they		1
FINISH UNLOADING	LEFT JOB	ARRIVED AT PLANT	ON SITE	TESTING			
	1 elunora e di		TESTING LAB: GES: CME	SNER OTHER	THE TRUE DUTY	ADDITIONAL CHARGI	E 1
		STED	AIR	CYLINDERS		ADDITIONAL CHARGE	E 2
	L YES	NO NO			a destimited of	GRAND TOTAL	
IRRITAT Contains Portland Cerm CONTACT MAY CAUSI Contact with Skin. In Ca Water. If Irritation Persist OCONCRETE is a Persity. PURCHASER UPON LEA ORIGINAL INSTRUCTIONS procured in collecting any use All accent of the Addit within S Made at Time Material is A \$25.00 Service Charge and Checks. Demoge Charge at	WARNING ING TO THE SKINA AI NIT, Wear Rubber Boots an E BURNS. Avoid Contact Vi e of Contact with Skin or Eye S. Get Medical Attention.KEE BIEL COMMODITY and BECOM WIST be TELEPHONED to the of MIST be TELEPHONED to the WIST be TELEPHONED to the Stowed.	ND EYES d Gloves. PROLONGED Vith Eyes and Prolonged as. Rinse Thoroughly With PCHILDREN AWAY. IES THE PROPERTY of the ES or CANCELLATION of FICE BEFORE LOADING reasonable attorney's fees. At the rate of 18% per thy. No Colian Allowed Unless be Collected on all Returned	PROPERTY LOAD TO BE SINCH F GUILTENT Per Customer - The driver of HELEASE buy to you sign the premises and/or adjacer material in this load where you driver is requesting that you and this supplement from any te public groups and that you adjace the supplement of the sup- tion of the truck and this sup- claimed by supplement of the sup- sidence of the truck and this sup- claimed by supplement of the sup- science of the truck and this sup- claimed by supplement of the sup- science of the truck and the sup- ter of the truck and the sup- science o	MAGE RELEASE Of EMADE INSIDE CURB LINE; Of this truck in presenting this atture is of the coinnon that the Way DoseNay datases damage to the coinnon that the approximation of the coinnon that and the coinnon that the coinnon and the coinnon that the and coinnon that the coinnon and the coinnon that the and coinnon that the coinnon that the coinnon that the and coinnon that the coinnon the coinnon that the coinnon the coinnon that the coinnon the coinnon that the coinnon that the coinnon that the coinnon the coinnon that the coinnon that the coinnon that the coinnon that the coinnon that the coinnon the coinnon that the coinnont the coinnont the coinnon that the coinnon that the	Excessive Water H ₂ O Ado GAL X WEIGHMASTER Surcha WARNING NOTICE AND SUPP CAUSED WIEN DELUXERING LOAD RECEIVED BY X	Is Detrimental to Concret led by Request/Authorize arge for credit ca LOW INDICATES THAT I IN LIER WILL NOT BE RESPON USIDE CURB LINE.	e Performance. d By: rds NE READ THE HEALTH HELE FOR ANY DAMAGE
						1	26474

 Report Number:
 A1171057.0232

 Service Date:
 06/29/22

 Report Date:
 09/15/22

 Task:
 PO# 611801-3

Client

Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Specified Strength: 4,000 psi @ 28 days

 Mix ID:
 Bcsn40500

 Supplier:
 Texcrete

 Batch Time:
 0840
 Plant:
 2

 Truck No.:
 13
 Ticket No.:
 64754

Field Test Data

Test	Result	Specification
Slump (in):	6 1/4	
Air Content (%):	2.4	
Concrete Temp. (F):	87	
Ambient Temp. (F):	81	
Plastic Unit Wt. (pcf):	145.2	
Yield (Cu. Yds.):		

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272 Project Riverside Campus Riverside Campus

Project Number: A1171057

Bryan, TX

Sample Information 06/29/22 Sample Time: 0920 Sample Date: Sampled By: Brian Maass Weather Conditions: Clear light wind Accumulative Yards: 10-10 Batch Size (cy): 10 Placement Method: Direct Discharge Water Added Before (gal): 5 Water Added After (gal): 0 Upper half middle Sample Location: **Placement Location:** West barrier

6198 Imperial Loop

Terracon

Laboratory Test Data

Set No.	Spec ID	Cyl. Cond.	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Max Load (lbs)	Comp Strength (psi)	Frac Type	Tested By
1	А	Good	6.00	28.27		09/14/22	77 F	116,030	4,100	3	SCG
1	В	Good	6.00	28.27		09/14/22	77 F	131,370	4,650	3	SCG
1	С	Good	6.00	28.27		09/14/22	77 F	122,860	4,350	5	SCG
1	D						Hold				
Initial C	ure: Out	tside Plastic Lie	ds	Final	Cure: Field (Cured	S	ample Descri	ption: 6-inch d	iameter cyl	inders

Comments: F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Samples Made By: Terracon

Services:

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Brian Maass Reported To: Contractor: MBC Management Report Distribution:

(1) Texas Transportation Institute, Bill Griffith

Start/Stop: 0815-1000

Reviewed By: lexander Dunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

	exas A&M ransportation stitute	QF 7.3-01 Sam	Concrete pling	Doc. No. QF 7 .3-01	Revision Date: 2020-0 7- 29	
Quality	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th lhn	Revision: 7	Page: 1 of 1	
Project No:	611801-03	Casting Date:	2/6/2023	Mix Design (psi):	4000	
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	Terr	acon	
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	Terr	acon	
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)	
T1	Jeremy Gonzal5	72867		100% of Deck		
Load No	Break Date	Cylinder Age	Total Load (lbs)	Break (nsi)	Average	

	TEXCRE Roli-mis Concrete (ТЕ С		www.sa	unders-usa con			147097
	REMIT PAYM P.O. BOX138 KURTEN, TX	7786 5222 Br	Sandy Point RD. yan, Tx 77807	17534 SH College Static	6 South 1 n, TX 77845 F	8935 Circle Lake D Pinehurst, TX 77362	. open	979-316-290 936-232-581 - 979-985-363
	TEXAS RELLIS	A&M TRANSP CAMPUS, BR	DRTATIO YAN TX	R' TI S'	T 2818,RT H He "T",RT H Tay straigh	WY 21,LT S WY 47,LT I ITALL THE W	ILVER HILL NTORELLIS AY DOWN TO	, RT AT ENTRANCE, THE GATE
	TIME	FORMULA	LOAD SIZE	YARD ORDERED	The sector of	DBIVEBATELICK	in the second	
	12:31	BCSN40500	3.00	3.00	0#	TEDEMV	CONTOL 5	PLANT TRANSACT
	DATE	PROJECT	LOAD#	YARDS DEL.	BATCH#	WATER TRIM	SLUMP	TICKET NUMBE
	2/6/23	TTIRELL	3.00	3.00	basen lin cost	1 to 200 10 200	5 00 in	70067
F	QUANTITY	CODE	DESCRIPTION	MALEY SUR	CRIMERENCIO.		UNIT PRICE	EXTENDED PR
-	3.00 y	d BCSN4050	00	MUN, 4	000, BLND. 5	11		
	LEFT PLANT	ARRIVED JOB 12:53 LEFT JOB	START UNLOADING	SLUMP ON SITE	CONCRETE TEMP.		for your Tax Prev. AMT Ticket Total	business
	1	augocod miss		TESTING LAB: GES	RACON SNER			
H		TES	STED	AIR	CYLINDERS	RHING DUST P	ADDITIONAL CHARGE	
	61	YES	NO		bag OPA va	daamulana pabu	GRAND TOTAL	
Con CON Con Wate	IRRITATIN ntains Portland Cemen NTACT MAY CAUSE tact with Skin. In Case er. If Irritation Persists.	WARNING IG TO THE SKIN AN t, Wear Rubber Boots and BURNS. Avoid Contact Wir of Contact with Skin or Eyes Get Medical Attention.KEEF	D EYES Gloves. PROLONGED th Eyes and Prolonged S, Rinse Thoroughly With CHILDREN AWAY.	PROPERTY DAI (TO BE SIGNED IF DELIVERY T Dear Customer - The driver of RELEASE to you for your sign size and weight of this truck me the premises and/or adjacer material in this load where yo help you in everyway that we of driver is requesting that you sign and this everyway that you sign.	MAGE RELEASE D BE MADE INSIDE CURB LINE) of this truck in presenting this ature is control to the coprion that the tary poor the coprion that the tary poor the coprion that the tary poor the coprion the coprise to desire it. It is places the u desire it. It is places the and, but in order to do this the no this RELEASE relieving the target of the target of the coprise the coprised of the target of the target of the coprised of the target of target of the target of the target of the target of the target of target of the target of targ	Excessive Water i H ₂ 0 Add GAL X WEIGHMASTER	s Detrimental to Concrete ed by Request/Authorized	Performance. J By:
CON PUF ORI start	NCRETE is a PERISHAB RCHASER UPON LEAVIN GINAL INSTRUCTIONS M ts. The undersigned promi	LE COMMODITY and BECOME IG the PLANT. ANY CHANGE UST be TELEPHONED to the Of ses to pay all costs, including re	S THE PROPERTY of the S or CANCELLATION of FFICE BEFORE LOADING assonable attorney's fees.	may occur to the premises buildings, sidewalks, driveways this material and that you als mud from the wheels of his veh	and or adjacent property, , curbs, etc. by the delivery of 0 agree to help him remove icle so that he will not liter the	Surcha	rae for gradit any	
All a	ccounts not paid within 30 c Not Responsible For R	owed. days of delivery will bear interest a leactive Aggregate or Color Quality	t the rate of 18% per v. No Claim Allowed Unless	undersigned agrees to indem driver of this truck and this sup the premises and /or adjace claimed by anyone to have arise	idditional consideration; the nify and hold harmless the blier for any and all damage to nt property which may be	NOTICE: MY SIGNATURE BEL	OW INDICATES THAT I HAN	E READ THE HEALTH
A \$2 Che	te at Time Material is Delivi 25.00 Service Charge and L cks. Demerge charge after s	ored. oss of the Cash Discounted will be 0 min. will be \$100.00/hr.	Collected on all Returned	SIGNED: V Try and to have an at	L	OAD RECEIVED BY	IDE CURB LINE.	BLE FOR ANY DAMAGE
-	ad a set of the				>	04 9 11		
							1,	17007
							-	1031

Report Number: A1171057.0265 Service Date: 02/06/23 Report Date: 03/23/23 Task: PO# 611801

6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Specified Strength: 4,000 psi @ 28 davs

Bcsb40500 Mix ID: Supplier: Texcrete Batch Time: 1343 Plant: Truck No.: Ticket No.: 72767

Field Test Data

Test	Result
Slump (in):	4
Air Content (%):	2.0
Concrete Temp. (F):	70
Ambient Temp. (F):	72
Plastic Unit Wt. (pcf):	
Yield (Cu. Yds.):	

Sample Information 02/06/23 Sample Time: Sample Date: Sampled By: Blake Youngblood Weather Conditions: Sunny, windy Accumulative Yards: 3 Batch Size (cy): 3 Placement Method: Chute Water Added Before (gal): 0 Water Added After (gal): 0 Sample Location: Slab Placement Location: Slab Sample Description:

1300

6-inch diameter cylinders

Laboratory Test Data

							Age at	Max	Comp		
Set	Spec	Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
NO.	ID	Cona.	(in)	(sq in)	Received	rested	(uays)	(IDS)	(psi)	туре	Бу
1	Α	Good	6.00	28.27		03/22/23	44 F	170,360	6,030	2	AWD
1	В	Good	6.00	28.27		03/22/23	44 F	159,900	5,660	3	AWD
1	С	Good	6.00	28.27		03/22/23	44 F	149,230	5,280	3	AWD
1	D						Hold				

Project

Bryan, TX

Riverside Campus

Riverside Campus

Project Number: A1171057

Initial Cure: Covered with Blanket Final Cure: Field Cured

Comments: Not tested for plastic unit weight. F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Specification

Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Blake Youngblood

Reported To:

Services:

Contractor: MDC

Report Distribution:

(1) Texas Transportation Institute, Bill Griffith (1) Texas Transportation Institute, Adam Mayer

Reviewed By:

Start/Stop: 1245-1400

lexander Dunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

	exas A&M ansportation stitute	QF 7.3-01 Sam	Concrete pling	Doc. No. QF 7.3- 01	Revision Date: 2020-0 7- 29
Quality	y Form	Revised by: B.L. Griffith Approved by: D. L. Kuhn		Revision: 7	Page: 1 of 1
Project No:	611801-03	Casting Date: 2/17/2023		Mix Design (psi):	4000
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	Terr	acon
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	Terr	acon
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)
T1	Jessie R. 152	73473		100% of Parapet	
	Break Date	Culinder Age	Total Load (lbs)	Break (nsi)	Average
Load No.	bleak bate	Cynnael Age	10tal 20au (153)	Dieak (psi)	Avelage

Report Number: A1171057.0267 Service Date: 02/17/23 Report Date: 03/23/23 Task: PO# 611801

Client

Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Field Test Data

Specified Strength: 4,000 psi @ 28 davs

Mix ID:	BCSN40500		
Supplier:	Texcrete		
Batch Time:	1125	Plant:	75270
Truck No.:	152	Ticket No.:	147685

Sample Information 02/17/23 Sample Time: Sample Date: Sampled By: Steven Savala Weather Conditions: Clear Accumulative Yards: 3 Batch Size (cy): 3 Placement Method: Chute Water Added Before (gal): 6 Water Added After (gal): 0 Sample Location: Placement Location:

Test Result Slump (in): 5 1/4 1.3 Air Content (%): Concrete Temp. (F): 74 Ambient Temp. (F): 51 Plastic Unit Wt. (pcf): Yield (Cu. Yds.):

Concrete stopper on runway Runway Sample Description: 6-inch diameter cylinders

erracon

1205

College Station, TX 77845-5765

979-846-3767 Reg No: F-3272

6198 Imperial Loop

Laboratory Test Data

Set No.	Spec ID	Cyl. Cond.	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Max Load (lbs)	Comp Strength (psi)	Frac Type	Tested By
1	А	Good	6.00	28.27		03/22/23	33 F	150,070	5,310	3	AWD
1	В	Good	6.00	28.27		03/22/23	33 F	139,670	4,940	5	AWD
1	С	Good	6.00	28.27		03/22/23	33 F	141,270	5,000	5	AWD
1	D						Hold				
Initial C	ure: Out	tside		Final	Cure: Field (Cured					

Project

Bryan, TX

Riverside Campus

Riverside Campus

Project Number: A1171057

Initial Cure: Outside

Comments: Not tested for plastic unit weight. F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Specification

Samples Made By: Terracon

Services:

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Steven Savala Will with TTIReported To: Contractor: ΠI **Report Distribution:**

(1) Texas Transportation Institute, Bill Griffith (1) Texas Transportation Institute, Adam Mayer

Start/Stop: 1000-1300

Reviewed By: lexander Dunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

Texas A&M Transportation Institute	LF-SST1 Crushed Concrete Soil Strength Performance Test Record	Doc. No. LF-SST2	Revision Date: 2021-04-05
Laboratory Form	Revised by: B.L.Griffith Approved by: D. L. Kuhn	Revision: 0	Page: 1 of 1
The information contained in this document is confidential to	TTI Proving Ground.		

Crushed Concrete Soil Strength Performance Test **MASH**, Appendix B

Project Number: 611801-04-1

Date of Crash Test: 2023-03-23

 Post No.
 1
 of
 1
 Fill Moisture:
 n/a %
 Native Moisture:
 n/a %

Temperature: <u>72</u> ° F Humidity: <u>95%</u>

File Name: Soil Strength_33.ASC

Displacement (in.)	*Pull Force (Lbf)	Minimum Force (Lbf)	Pass / Fail
5	10,242	4420	Р
10	10,060	4981	Р
15	10,152	5282	Р

*Do not exceed 10,000 lbf

Test Post	25	ft	South	🛛 North	of terminal post
Location:		ft	🗆 East 🛛	□ West	of terminal post

Performed by: e-brackin & m-robinson Date: 2023-03-23

Printed copies are not controlled documents. LF-SST2 Crushed Concrete Soil Strength Performance

ISO/IEC 17025:2017

Texas A&M Transportation Institute	LF-SST1 Crushed Concrete Soil Strength Performance Test Record	Doc. No. LF-SST2	Revision Date: 2021-04-05
Laboratory Form	Revised by: B.L.Griffith Approved by: D. L. Kuhn	Revision: 0	Page: 1 of 1
The information contained in this document is confidential to	TTI Proving Ground.		

Crushed Concrete Soil Strength Performance Test **MASH**, Appendix B

Project Number: 611801-04-2

Date of Crash Test: 2023-03-30

Post No. 1 of 1 Fill Moisture: <u>n/a %</u> Native Moisture: <u>n/a %</u>

Temperature: <u>65</u> ° <u>F</u> Humidity: <u>92%</u>

File Name: Soil Strength_35.ASC

Displacement (in.)	*Pull Force (Lbf)	Minimum Force (Lbf)	Pass / Fail
5	8545	4420	Р
10	9515	4981	Р
15	10,181	5282	Р

*Do not exceed 10,000 lbf

Test Post	15	ft	South North of terminal post
Location:		ft	East UWest of terminal post

Performed by: e-brackin & m-robinson Date: 2023-03-30

Printed copies are not controlled documents. LF-SST2 Crushed Concrete Soil Strength Performance

ISO/IEC 17025:2017

APPENDIX C. MASH TEST 3-20 (CRASH TEST NO. 611801-03-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2022-09-15	Test No.:	611801-03-1	VIN No.:	3N1CN7P4GL840091
Year:	2016	6 Make:	Nissan	Model:	Versa
Tire Inf	lation Pressu	re: <u>36 PSI</u>	Odometer: <u>85337</u>		Tire Size: <u>P185/65R15</u>
Descrit	pe any damag	ge to the vehicle pri	or to test: <u>None</u>		
• Den	otes accelero	meter location.			
NOTES	S: <u>None</u>		— A M — — —	_	••
Engine	Type: <u>4 C</u>	YL			
Transn	nission Type:		Q		
<u>None</u>					
	v Data:				
Type:	<u>- 501</u>	th Percentile Male	_ ^{_]}	<h <₩</h 	
Seat I	Position:		_ !	€E €	
Geom	etry: inche	s	4		C
A 66.7	70 70	F 32.50	K 12.50	P 4.50	U 15.50
B 59.6	60	G	L 26.00	Q 24.00	0 V 21.25
C 175	.40	H 41.17	M 58.30	R 16.2	5 W
D 40.5	50	l 7.00	N 58.50	S 7.50	X 79.75
E <u>102</u>	.40	J <u>22.50</u>	O <u>30.50</u>	T <u>64.5</u> 0	0
Whe	eel Center Ht	Front 11.50	Wheel Center H	It Rear 11.50	о w-н <u>-41.17</u>
RA	ANGE LIMIT: A = 65 ±	±3 inches; C = 169 ±8 inches; E (M+N)/2 = 59 ±	= 98 ±5 inches; F = 35 ±4 inches; 2 inches; W-H < 2 inches or use MAS	H = 39 ±4 inches; O 6H Paragraph A4.3.2	(Top of Radiator Support) = 28 ±4 inches
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	<u>Test I</u>	nertial Gross Static
Front	1750	Mfront	1420	1457	1542
Back	1687	M _{rear}	938	980	1060
Total	3389	MTotal	2358	2437	2602
			Allowable TIM = 2	2420 lb ±55 lb Allow	able GSM = 2585 lb ± 55 lb
IVIASS [Jistribution:	F [.] 712	RF: 745		RR^{\cdot} 480
u,		LI. <u>112</u>	1NL. <u>743</u>	LIN. <u>300</u>	× 400
	Fig	ure C.1. Vehic	le Properties for	Test No.	611801-03-1.

Date:	2020-09-15	Test No.:	611801-03-1	VIN No.:	3N1CN7AP4GL840091
Year:	2016	Make:	Nissan	Model:	Versa

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2 _					
< 4 inches	2					
≥ 4 inches						

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

e	Direct Damage										
Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	1 C ₂	C_3	C4	C5	C_6	±D
1	AT FT BUMPER	14	7	36							-10
2	APOVE FT BUMPER	14	8	48							60
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 611801-03-1.

Date:	2020-09-15	Test No.:	611801-03-1		VIN No.:	3N1CN7AP4	GL840091
Year:	2016	Make:	Nissan		Model: V	ersa	
(H-			C DE	DCCUPAN FORMATIO	COMPART	MENT EMENT
	F				Before	After (inches)	Differ.
	G			A1	67.50	67.50	0.00
1L				A2	67.25	67.25	0.00
\bigtriangledown				A3	67.75	67.75	0.00
				B1	40.50	40.50	0.00
				B2	39.00	39.00	0.00
	B1, B2	, B3, B4, B5, B6		B3	40.50	40.50	0.00
				B4	36.25	36.25	0.00
	A1, A	2, &A 3		B5	36.00	36.00	0.00
\exists		3 8 03 .		B6	36.25	36.25	0.00
\Box				C1	26.00	26.00	0.00
~				C2	0.00	0.00	0.00
				C3	26.00	24.00	-2.00
				D1	9.50	9.50	0.00
				D2	0.00	0.00	0.00
				D3	9.50	9.50	0.00
		B2 D2		E1	51.50	46.50	-5.00
				E2	51.00	54.50	3.50
				F	51.00	51.00	0.00
				G	51.00	51.00	0.00
				Н	37.50	37.50	0.00
				1	37.50	37.50	0.00

*Lateral area across the cab from

driver's side kick panel to passenger's side kick panel.

Figure C.3. Occupant Compartment Measurements for Test No. 611801-03-1.

Т

J*

51.00

-5.00

46.00

C.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.4. Sequential Photographs for Test No. 611801-03-1 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.5. Sequential Photographs for Test No. 611801-03-1 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.6. Sequential Photographs for Test No. 611801-03-1 (Rear Views).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure C.7. Vehicle Angular Displacements for Test No. 611801-03-1.

C.4. VEHICLE ACCELERATIONS

Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-03-1 (Accelerometer Located at Center of Gravity).

Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-03-1 (Accelerometer Located at Center of Gravity).

Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-03-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASH TEST 3-21 (CRASH TEST NO. 611801-03-2)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2	2022-09-28	Test No.	: 61180	1-03-2	VIN No.	: <u>1C6R</u> F	R6GT4GS	133477
Year:	2016	Make	:RA	M	Model	:	1500	
Tire Size:	265/70 F	R 17		Tire I	nflation Pre	essure:	35 p	si
Tread Type:	Highway				Odd	ometer: <u>111</u>	002	
Note any dar	mage to the	e vehicle prior to	o test: <u>Nor</u>	e				
 Denotes a 	iccelerome	ter location.]	◀───X ─ ◀── ₩ ─►	-		
NOTES: N	one		1 +		77			
Engine Type Engine CID:	e: V-8 5.7 lite	er		EL C				WHEEL WHEEL
Transmission	n Type: or	🗖 Manual				ТЕ	ST INERTIAL C. M.	
) _ RV		C					•
Optional Equ None	uipment:						$\overline{\bigcirc}$	
Dummy Data Type:	a:		J-J-				(P)-	
Mass: Seat Positio	on:		_	- F	€H►- €	└─ G E	→ D -	•
Geometry:	inches			Ť	M FRONT		▼ M REAR	
A78	50	F40.00	_ к	20.00	Р	3.00	U	26.75
В74	.00	G28.50	<u> </u>	30.00	Q	30.50	_ V	30.25
C227	.50	H61.29	<u> </u>	68.50	R	18.00	_ W_	61.25
D 44	.00	I <u>11.75</u>	N	68.00	S	13.00	_ X _	79.00
E <u>140</u>	0.50	J27.00		46.00	_ Т_	77.00		
Wheel Ce Height F	ront	14.75 c	Wheel We Clearance (Front)	6.00	Bottom Fra Height - F	ame ront	12.50
Wheel Ce Height F	nter Rear	14.75	Wheel We Clearance (Rear		9.25	Bottom Fra Height - F	ame Pear	22.50
RANGE LIMIT: A=	=78 ±2 inches; C=	237 ±13 inches; E=148 ±	:12 inches; F=39 ±3 i	/ nches; G = > 28 ir	nches; H = 63 ±4	inches; O=43 ±4 inch	nes; (M+N)/2=67	±1.5 inches
GVWR Ratir	ngs:	Mass: It	o <u>Cu</u>	rb	Test	Inertial	Gros	s Static
Front	3700	Mfront		2960		2825		
Back	3900	M _{rear}		2075		2186		
Total	6700	М _{Тоtal}		5035		5011		5011
Mass Distril	bution:			(Allowable	Range for TIM and	d GSM = 5000 lb ±11	10 lb)	
lb		LF: <u>1425</u>		1400	LR:	1110	RR:	1076

Figure C.1. Vehicle Properties for Test No. 611801-03-2.

Date:	2022-09-28	Test No.:	611801-03-2	VIN No.:	1C6RR6GT4GS133477
Year:	2016	 Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2 _						
< 4 inches	2 =						
\geq 4 inches							

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C_4	C_5	C_6	±D
1	AT FT BUMPER	24	12	36							-18
2	SAME	24	12	72							64
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 611801-03-2.

Date:	2022-09-28	_ Test No.:	611801-03-2	_ VIN No.:	1C6RR6GT4GS133477				
Year:	2016	_ Make:	RAM	Model:	150	0			
	The	- + -) / +	т. D	OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT					
	F		1	Before	After (inches)	Differ.			
		E2 E3 E	A1	65.00	65.00	0.00			
K			A2	63.00	63.00	0.00			
			Аз	65.50	65.50	0.00			
			B1	45.00	45.00	0.00			
			B2	38.00	38.00	0.00			
			B3	45.00	45.00	0.00			
B1-3 B4-6	B4	39.50	39.50	0.00					
	-6 B5	43.00	43.00	0.00					
6		-3	В6	39.50	39.50	0.00			
			C1	26.00	26.00	0.00			
	\mathcal{I}		 C2	0.00	0.00	0.00			
	~		C3	26.00	22.50	-3.50			
			D1	11.00	11.00	0.00			
			D2	0.00	0.00	0.00			
			D3	11.50	11.50	0.00			
B1,4 B3,6	E1	58.50	57.00	-1.50					
	E2	63.50	65.00	1.50					
		1-4	E3	63.50	63.50	0.00			
			E4	63.50	63.50	0.00			
			F	59.00	59.00	0.00			

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

Figure D 3	Occupant	Compartment	Magguraments	for Test No	611801-03-2
Figure D.J.	Occupant	Compartment	ivicasui citicitis	IOI TESLINO.	011001-03-2.

G Н

I

J*

59.00

37.50

37.50

24.00

59.00

37.50

37.50

21.50

0.00

0.00

0.00

-2.50

D.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

€ 0.200 s

(d) 0.300 s

€ 0.400 s

(f) 0.500 s

(a) 0.000 s

(b) 0.100 s

€ 0.200 s

(d) 0.300 s

€ 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.5. Sequential Photographs for Test No. 611801-03-2 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

€ 0.200 s

(d) 0.300 s

€0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.6. Sequential Photographs for Test No. 611801-03-2 (Rear Views).

D.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure D.7. Vehicle Angular Displacements for Test No. 611801-03-2.

D.4. VEHICLE ACCELERATIONS

Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-03-2 (Accelerometer Located at Center of Gravity).

Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-03-2 (Accelerometer Located at Center of Gravity).

Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-03-2 (Accelerometer Located at Center of Gravity).

APPENDIX E. MASH TEST 3-20 (CRASH TEST NO. 611801-04-1)

E.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2023-03-27	Test No.∶	<u>611801-04-1</u>		VIN No.:	<u>3N1CN7AF</u>	24HL801342
Year:	2017	Make:	Nissan		Model:	Versa	
Tire Infl	lation Pressure: <u>36 I</u>	PSI	_ Odometer:	234630		Tire Size:	P185/65R15
Describ	be any damage to the	e vehicle pric	or to test: <u>No</u>	one			
• Deno	otes accelerometer lo	ocation.	†			====	
NOTES	S: <u>None</u>		- д м ——			••	
			-				
Engine Engine	Type: <u>4 CYL</u> CID: 1.6 L		_ <u>* · · · · · · · · · · · · · · · · · · </u>				
	nission Type: Auto or П	Manual	_	← Q →	- 0		
Optiona	FWD I RWD	4WD	P				
None			- • • • • •		1		
	D /						
Dummy Type:	/ Data: 50th Percer	ntile Male	ا تـ _ا	⋖ ─F─ ⊳ ⋖─	—н— - в		∟к
Mass:	165 lb		_		——		D ->
Seat F	Position: <u>IMPACT SI</u>	DE	-	-		-X	
Geome	etry: inches		,	4		C	
A <u>66.7</u>	0 F <u>32.</u>	50	K <u>12.50</u>		P <u>4.50</u>		U <u>15.50</u>
B <u>59.6</u>	<u> </u>		L <u>26.00</u>		Q <u>24.0</u>	D	V <u>21.25</u>
C <u>175.</u>	40 H <u>41.8</u>	37	M <u>58.30</u>		R <u>16.2</u>	5	W <u>41.75</u>
D <u>40.5</u>	0l <u>7.00</u>)	N <u>58.50</u>		S <u>7.50</u>		X <u>79.75</u>
E <u>102.</u>	40 J <u>22.</u>	50	O <u>30.50</u>		T <u>64.5</u>	0	
Whe	el Center Ht Front <u>1</u>	1.50	Wheel (Center Ht F	Rear <u>11.50</u>)	W-H <u>-0.12</u>
RA	NGE LIMIT: A = 65 ±3 inches; C	= 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 ±5 inches: F = 35 inches: W-H < 2 inche	5 ±4 inches; H = 3 es or use MASH Pa	9 ±4 inches; O aragraph A4.3.2	(Top of Radiator Su	upport) = 28 ±4 inches
GVWR	Ratings:	Mass: Ib	<u>Curb</u>		<u>Test I</u>	<u>nertial</u>	Gross Static
Front	1750	M _{front}	1421		1447		1532
Back	1687	M _{rear}	988		1001		1081
Total	3389	M _{Total}	2409		2448		2613
	N - 4-11 41 -		Allo	wable TIM = 2420	lb ±55 lb Allow	able GSM = 2585 I	b ± 55 lb
IVIass E	Jistribution: ∣ ⊑	821	RF: 626		I R [.] 447	,	RR: 554
					<u></u>		

Figure E.1. Vehicle Properties for Test No. 611801-04-1.

Date:		_ Test No.:	611801-04-	1	VIN No.:	3N1CN7AP4HL801342
Year:	2017	Make:	Nissan		Model:	Versa
	V	EHICLE C	RUSH ME.	ASUREM	ENT SHE	ET ¹
		(Complete Wh	en Applicab	le	
	End Dar	nage			Si	de Damage
	Undeformed	end width		-	Bowing: B1	X1
	Corne	r shift: A1			B2	X2
		A2				
	End shift at fram	e (CDC)		Bow	ving constan	t
	(check on	e)			X1+X2	
		<4 inches			2	
		\geq 4 inches				

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C_4	C5	C_6	±D
1	AT FT BUMPER	12	8	56							28
2	ABOVE FT BUMPER	12	10	48							56
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure E.2. Exterior Crush Measurements for Test No. 611801-04-1.

Date:		Test No.:	611801-04-1	<u>۱</u>	/IN No.:	3N1CN7AP4	HL801342
Year:	2017	Make:	Nissan	٩	Model: Ver	sa	
	H-		2	O(DEF	CCUPANT ORMATIO	COMPARTI N MEASURI	MENT EMENT
	F				Before	After (inches)	Differ.
	G			A1	67.50	67.50	0.00
11		7		A2	67.25	67.25	0.00
Q				A3	67.75	67.75	0.00
				B1	40.50	40.50	0.00
				B2	39.00	39.00	0.00
	B1, B2, E	33, B4, B5, B6		B3	40.50	40.50	0.00
				B4	36.25	36.25	0.00
				B5	36.00	36.00	0.00
	D1, D2, & D3			B6	36.25	36.25	0.00
		FT ((C1	26.00	26.00	0.00
				C2	0.00	0.00	0.00
				C3	26.00	25.00	-1.00
				D1	9.50	9.50	0.00
				D2	0.00	0.00	0.00
		1		D3	9.50	9.50	0.00
		2 02		E1	51.50	48.50	-3.00
		$F2 \rightarrow F2$		E2	51.00	52.00	1.00
				F	51.00	51.00	0.00
				G	51.00	51.00	0.00
				Н	37.50	37.50	0.00

*Lateral area across the cab from

driver's side kick panel to passenger's side kick panel.

Figure E.3. Occupant Compartment Measurements for Test No. 611801-04-1.

| J* 37.50

51.00

37.50

50.00

0.00

-1.00

E.2. **SEQUENTIAL PHOTOGRAPHS**

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(h) 0.700 s (g) 0.600 s Figure E.4. Sequential Photographs for Test No. 611801-04-1 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure E.5. Sequential Photographs for Test No. 611801-04-1 (Frontal Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure E.6. Sequential Photographs for Test No. 611801-04-1 (Rear Views).

E.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure E.7. Vehicle Angular Displacements for Test No. 611801-04-1.

E.4. VEHICLE ACCELERATIONS

X Acceleration at CG

Y Acceleration at CG

Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-04-1 (Accelerometer Located at Center of Gravity).

Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-04-1 (Accelerometer Located at Center of Gravity).

APPENDIX F. MASH TEST 3-21 (CRASH TEST NO. 611801-04-2)

F.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2023-03-30)	Test No.	:61180	01-04-2	VIN No.:	1C6RR	6GTXHS	512761
Year:	2017		Make	:R	АМ	Model		1500	
Tire Size:	265/70 F	२ १७			Tire I	nflation Pre	essure:	35 p	osi
Tread Type	e: Highway	/				Odd	meter: <u>1541</u>	98	
Note any d	amage to th	e veh	icle prior to	o test: No	ne				
• Denotes	accelerome	ter lo	cation						
	Vono		oution.	4					
NOTES: 1	NUTIE			- 1		7// T			
Engine Typ	be: <u>V-8</u>				EEL CK	+-			
Engine CIL): <u>5.7 lit</u>	er		- + +	-6-	-		_j	TRACK
Transmissi	on Type:		Manual				TEST	Í INERTIAL C. M.	
		WD		C	R - P				4
Optional Ec	quipment:								7
None				_ 1 _		T.		3	ЦВ
Dummy Da	ta:			Ţ J-Ţ I))~ \ +	₩ ₩ ₩ ₩	P	T _K L
Type: Mass:					- F	∟u ש—-H_			
Seat Posi	tion:			_	-	•	- E	→ ->	•
Geometry	inches				Ψ.	M FRONT		$\mathbb{V}_{\text{rear}}^{M}$	
A 7	8.50	F	40.00	к	20.00	Р	— с — <u>3</u> .00	U	26.75
в 7	4.00	G _	28.62	_ L _	30.00		30.50	v	30.25
C 22	27.50	н _	61.66	M	68.50	R	18.00	W	61.50
D4	14.00	Ι	11.75	N	68.00	s	13.00	X _	79.00
E14	10.50	J _	27.00	_	46.00	_ Т_	77.00		
Wheel C Height	Center Front	1	4.75 c	Wheel We learance (Fror	ell it)	6.00	Bottom Fran Height - Fro	ne ont	12.50
Wheel C Height	Center Rear	1	4.75 (Wheel We Clearance (Rea	ell (r)	9.25	Bottom Fran Height - Re	ne Par	22.50
RANGE LIMIT: .	A=78 ±2 inches; C:	=237 ±13	inches; E=148 ±	12 inches; F=39 ±3	inches; G = > 28 ir	nches; H = 63 ±4 i	nches; O=43 ±4 inche	es; (M+N)/2=67	±1.5 inches
GVWR Rat	ings:		Mass: Ib	D <u>Ci</u>	<u>urb</u>	Test	Inertial	Gros	s Static
Front	3700		Mfront		2920		2834		2834
Back	3900		M _{rear}		2145		2217		2217
Total	6700		M _{Total}		5065		5051		5051
Mass Dist	ribution:				(Allowable	rcange for i nvi and	1 1 1 ± al 000 = 1468	נטרי	
lb	_	LF:	1401		1433	LR:	1135	RR:	1082

Figure F.1. Vehicle Properties for Test No. 611801-04-2.

Date:	2023-03-30	Test No.:	611801-04-2	VIN No.:	1C6RR6GTXHS512761		
Year:	2017	Make:	RAM	Model:	1500		

VEHICLE CRUSH MEASUREMENT SHEET¹

End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2
\geq 4 inches	

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	AT FT BUMPER	12	10	36							+18
2	ABOVE FT BUMPER	12	14	64							74
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure F.2. Exterior Crush Measurements for Test No. 611801-04-2.

Date:	2023-03-30	_ Test No.: _	611801-04-2	VIN No.:	1C6RR6GTX	HS512761
Year:	2017	_ Make:	RAM	_ Model:	150	0
	717	+ -) / +	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	OCCUPANT EFORMATIO	COMPARTI N MEASUR	MENT EMENT
	F			Before	After (inches)	Differ.
	J E1	E2 E3 E	A1	65.00	65.00	0.00
K			A2	63.00	63.00	0.00
		н	⊉⊑ АЗ	65.50	65.50	0.00
			B1	45.00	45.00	0.00
			B2	38.00	38.00	0.00
			ВЗ	45.00	45.00	0.00
			B4	. 39.50	39.50	0.00
		B1-3 B4-	-6 B5	43.00	43.00	0.00
6	DI	-3	B6	39.50	39.50	0.00
\square			C1	26.00	26.00	0.00
			 C2	0.00	0.00	0.00
	<u> </u>		C3	26.00	23.00	-3.00
			D1	11.00	11.00	0.00
			D2	0.00	0.00	0.00
			D3	11.50	11.50	0.00
			E1	58.50	56.50	-2.00
	B1,4	<u> B3,6</u>	E2	63.50	64.50	1.00
	 − E	1-4	E3	63.50	63.50	0.00
			E4	63.50	63.50	0.00
			F	59.00	59.00	0.00
			G	59.00	59.00	0.00
			Н	37.50	37.50	0.00

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

Figure F.3. Occupant Compartment Measurements for Test No. 611801-04-2.

L

J*

37.50

25.00

37.50

25.00

0.00

0.00

F.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure F.5. Sequential Photographs for Test No. 611801-04-2 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure F.6. Sequential Photographs for Test No. 611801-04-2 (Rear Views).

F.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure F.7. Vehicle Angular Displacements for Test No. 611801-04-2.

F.4. VEHICLE ACCELERATIONS

Figure F.8. Vehicle Longitudinal Accelerometer Trace for Test No. 611801-04-2 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

Figure F.9. Vehicle Lateral Accelerometer Trace for Test No. 611801-04-2 (Accelerometer Located at Center of Gravity).

Figure F.10. Vehicle Vertical Accelerometer Trace for Test No. 611801-04-2 (Accelerometer Located at Center of Gravity)

APPENDIX G. DETAILS OF THE CONCRETE SINGLE SLOPE PARAPET TRANSITION

S:Vaccreditation-17025-2017/EIR-000 Project Files/611801-04, Wyoming DoT - Bligh & Sheikh\Drafting for transition to SS/2023-10-23/Vertical Wall to SS Drawing

S:Vaccreditation-17025-2017/EIR-000 Project Files/611801-04, Wyoming DoT - Bligh & Sheikh\Drafting for transition to SS/2023-10-23/Vertical Wall to SS Drawing

228

S:Vaccreditation-17025-2017/EIR-000 Project Files/611801-04, Wyoming DoT - Bligh & Sheikh\Drafting for transition to SS/2023-10-23/Vertical Wall to SS Drawing

230

S:\Accreditation-17025-2017\EIR-000 Project Files\611801-04, Wyoming DoT - Bligh & Sheikh\Drafting for transition to SS\2023-10-23\Vertical Wall to SS Drawing

S: Accreditation-17025-2017 EIR-000 Project Files 611801-04, Wyoming DoT - Bligh & Sheikh\Drafting for transition to SS\2023-10-23 \Vertical Wall to SS Drawing